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Real-time feedback control of gene expression

AĶňŉŇĵķŉ

Gene expression is fundamental for the functioning of cellular processes and tightly regulated.

Inducible promoters allow to perturb gene expression by changing the expression level of a pro-

tein from its physiological level. ĉis is a common tool to decipher the functioning of biological

processes: the expression level of a gene is changed and it is observed how the perturbed cell be-

haves different from an unperturbed one. A shortcoming of inducible promoters is the difficulty

to apply precise and time-varying perturbations. ĉis is due to cell to cell variability and noise

in the gene expression process which limit the precision of the applied perturbations. Precise

time varying perturbations on the other hand are particularly informative about the dynamics of

a biological system.

Here I present a feedback control platform, that can control the expression of a yeast genewith

quantitative accuracy over long time periods. ĉe platform integrates Ěuorescence microscopy

to monitor gene expression, microĚuidics to act on the cellular environment and soěware im-

plementing real-time image analysis and control. ĉis closed-loop control setup is able to drive

the expression of a yeast gene in a population of cells or in a single cell for both time-constant

and time-varying target proėles. I use the high osmolarity glycerol (HOG) pathway, a stress re-

sponse pathway in S. cerevisiae, to activate gene expression, but I show that the platform can be

easily modiėed to use other gene induction systems. In addition to the gene expression control

platform, I present a feedback control system able to control the activity of the HOG pathway.
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1
Introduction

ǉ.ǉ MŃŉĽŋĵŉĽŃłň

Proteins are the building blocks of each cell. ĉey deėne the physical shape of a cell, catalyze reac-
tions and mediate intra- and intercellular communication, so in short they are imperative for cell
functioning. ĉeprocessof proteinproduction is controlledbygeneexpression. Geneexpression
is regulated at various levels, which allows the cell to adjust its protein production to the current
needs despite constant perturbations. Both internal factors like the cell cycle stage or growth rate
and external factors like nutrient availability inĚuence gene expression. Regulating gene expres-
sion is of vital importance for the cell, for example a cell would not be able to accommodate to
changes in the environment without changing the expression level of certain proteins. Regulat-
ing gene expression is also a requirement for multicellular life, because it allows differentiation so
that cells having the same genotype can still express different sets of proteins.
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CHAPTER ǉ. INTRODUCTION

ǉ.ǉ.ǉ GĹłĹ ĹŎńŇĹňňĽŃł Ľň ŇĹĻŊŀĵŉĹĸ

ĉis central role of gene expression explains the effort that has been undertaken within the last
Ǎǈ years to understand the underlying mechanisms. ĉe ėrst mechanism of a regulation of gene
expression was discovered by Jacques Monod and François Jacob in ǉǑǎǉ [ǉ], when they unrav-
eled the mechanism by which the lac operon is regulated in E. coli [Ǌ]. ĉe lac operon contains
three enzymes required for the metabolism of lactose. ĉe expression of these enzymes is con-
trolled by a protein called the lac repressor, which binds to the deoxyribonucleic acid (DNA) in
the absence of lactose and hinders the expression. In the presence of lactose, the repressor disso-
ciates from the DNA, so the enzymes are only produced if they are needed. Since the discovery
of the lac operon, many other mechanisms of gene regulation have been found at every level of
gene expression [ǋ] and are still being found. For example Wan et al. recently discovered that
in S. cerevisiae, RNA transcripts which are degraded in response to heat shock oěen change their
conformation in response to a temperature change from ǋǈ◦C to ǋǏ◦C [ǌ]. ĉis result suggests
that there might be a previously unknown regulation mechanism, in which RNA transcripts act
as thermo-sensors.

FĹĹĸĶĵķĿ ŀŃŃńň ĵŇĹ ĵł ĵĶŊłĸĵłŉ ĺĹĵŉŊŇĹ Ńĺ ĶĽŃŀŃĻĽķĵŀ ňŏňŉĹŁň

Regulations can either have a positive or negative inĚuence. In a positive feedback loop, the reg-
ulation has an indirect positive inĚuence on its own activity, while negative feedback loops show
the opposite behavior. An example for a negative feedback loop is again the lac operon: an in-
crease in the level of lacZ, the enzyme which metabolizes lactose, leads to a decrease in lactose
concentration, which in turn leads to a down-regulation of this enzyme (see Figure ǉ). Negative
feedback loops are a very common feature in biology [Ǎ] as they ensure a balance between the
available amount of the substrate of an enzyme and the concentration of this enzyme. In addition
negative autoregulations can stabilize the expression level of a protein. Becskei et al. showed in a
synthetic system, that a genewhich inhibits its own expression shows a lower variation compared
to the unregulated gene [ǎ]. Cells use such negative autoregulations to maintain the expression
level of proteins in the face of external perturbations [Ǐ]. In addition to a negative feedback loop,
the lac operon also contains a positive feedback: activation of the operon induces the membrane
lactose transporter lacY, which in turn positively inĚuences the amount of lactose which is im-
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ǉ.ǉ. MOTIVATIONS
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Figure ǉ: Regulation of the lac operon. ĉe lac operon consists of the three genes lacZ, lacY and
lacA which code for proteins involved in the import and metabolism of lactose. lacZ codes for
the enzyme β-galactosidase which breaks down lactose to galactose and glucose, while lacY codes
for a membrane transporter responsible for the uptake of lactose (lactose permease). ĉe third
gene, lacA, codes for the enzyme thigalactoside acetyltransferasewhose biological function is still
unclear. ĉe transcription factor lacI (lactose repressor) binds to the lac operator in the absence
of lactose thereby preventing expression of the operon. ĉis creates a negative feedback loop,
because expression of the lac operon has a negative inĚuence on the concentration of lactose.

ported [ǐ] and thereby as well the expression of the operon. Positive feedback loops can lead to
bistability, meaning that for a certain input two states inwhich the system can be are possible. For
the lactose system this means that for low lactose concentrations two states are possible: (i) the
expression level of the operon is close to zero because not enough transporter is available to im-
port enough lactose such that the systemcould be activated. (ii)ĉeoperon is expressed, because
there is already enough transporter to reach a critical threshold of internal lactose concentration.
Whether the system is in state (i) or (ii) depends to the history of the system. Such a switch like
behavior ensures that the enzymes for lactose consumption are only expressed once the lactose
concentration reaches a certain threshold.
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CHAPTER ǉ. INTRODUCTION

ǉ.ǉ.Ǌ GĹłĹ ĹŎńŇĹňňĽŃł ķĵł ĶĹ ķŃłŉŇŃŀŀĹĸ ĹŎŉĹŇłĵŀŀŏ

ĉeability to alter gene expressionplays an important role in the pharmaceutical andbiotechnical
industries. For example insulin can nowadays be produced byE. coli cells, which carry the human
insulin gene [Ǒ]. Before it was possible to produce genetically engineered human insulin, the
method of producing insulin analogs was to isolate them from the pancreas of pigs or cows, but a
problem here was that these animal insulin has a slightly different amino acid sequence than the
human insulin.

ĉeexpression level of a gene ismainly determinedby its promoter sequence, aDNAsequence
which is the initial binding site for the RNA polymerase and for transcription factors that inĚu-
ence the expressionof the gene. Apromoterdoesnotonly inĚuence the strengthof the expression
of a genebut also its temporal expressionproėle andpotential co-regulationswithother genes. To
adjust the enzyme level, the promoter expressing the insulin gene has to be carefully chosen. To
provide researchers as well as genetic engineers with the possibility to choose a promoter suitable
for their speciėc requirements, promoter libraries have been developed for different organisms
[ǉǈ–ǉǋ].

An important tool in biology is the ability to inĚuence the expression of certain genes exter-
nally. ĉis allows to study the biological role of the inĚuenced gene by playing with its expression
level (e.g. dependence of the growth rate on the concentration of a certain protein [ǉǌ]). In-
ducible promoters allow to inĚuence the expression of a gene via external factors, which are oěen
small molecules that interact with transcription factors or are sensed via membrane receptors,
which trigger a signaling cascade that affects gene expression. In addition there are promoters
which react to physical changes like temperature shiěs [ǉǍ, ǉǎ] or light [ǉǏ]. Note that in fact
all these promoters are not inĚuenced directly by small molecules, temperature or light, their ac-
tivity change relies on transcription factors whose binding affinity to the promoter is affected in
response to a small molecule, a temperature shiě or a light intensity change.

Inducible promoters can be endogenous promoters which are already present in the studied
cell, just that the natural promoter is used to control a new gene. ĉis can be a problem, because
the environmental factor controlling the promoter is oěen not limited to a particular gene, but
controls a number of genes, or has other side effects, an effect called pleiotropy. To circumvent
side effects one can introduce gene inducible systems which originate from a distinct species, so
that the effect of the inducer is limited to the gene to be controlled (orthogonality) [ǉǐ]. Limi-
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ǉ.ǉ. MOTIVATIONS

tations of inducible promoters are pleiotropic effects mentioned above as well as the stochastic
nature of gene expression, which renders it hard to predict the effect of an inducer at the single
cell level [ǉǑ, Ǌǈ].

ǉ.ǉ.ǋ SŏłŉļĹŉĽķ ĺĹĹĸĶĵķĿ ŌĽŉļĽł ŉļĹ ķĹŀŀ

Synthetic biology is a novel ėeld of biological research that aims at implementing new biological
functions into living organisms. From a scientiėc point of view, this approach offers unprece-
dentedopportunities toput our knowledge aboutbiological processes to a test, becauseone could
argue that we only really understand a system if we are able to reconstruct it. From an engineer-
ing perspective, synthetic biology promises great economic impact in the near future, because
microorganisms could be used for many applications like the production of bio-fuels, pharma-
ceutical developments and drug production, or as biological sensors.

ĉe ėrst synthetic gene networks constructedwere a genetic toogle switch [Ǌǉ] and a network
exhibitingoscillations consistingof ǋ genes [ǊǊ]. Since then,manyother synthetic genenetworks
have been developed, including improved oscillators, logic gates or communication modules.

ĉeexact inĚuence of an inducible promoter is oěennot easy to predict. Oneway to tackle this
lack of precision of inducible gene systems is to implement a synthetic feedback control in which
the expressed protein inhibits its own expression. ĉere have been several aĨempts to imple-
ment such a feedback system in live cells. In Ǌǈǈǈ Becskei and Serrano implemented a feedback
loop in E. coli in which a protein inhibits its own expression [ǎ] (see Figure ǊA).ĉey observed a
much lower variation for the autoregulated system as compared to a non-regulated version of the
system. A negative feedback system in mammalian cells was implemented in Ǌǈǉǉ in the group
of Diego di Bernado [Ǌǋ]. ĉis systems contains two negative feedback loops, one acting via the
transcriptional repressor tetR-KĆB¹ and another via a short-hairpinRNA² (see Figure ǊC).ĉe
strength of both feedback can be tuned externally and the authors propose this setup to imple-
ment a toogle switch, which shows a bistable behavior. Also in Ǌǈǉǉ, Stapleton et al. implemented
a feedback control of protein expression in mammalian cells which acts at the translational level
[Ǌǌ]. Amodiėed ribosomal LǏAe protein binds its ownmRNA thereby inhibiting its own trans-
lation as well as the translation of a potential fusion protein. ĉe mRNA is expressed using a

¹TetR-KĆB is a fusion protein of the tetracycline repressor (tetR) and of the the Krüppel-associated box
repressor (KĆB) protein

²Short hairpin (sh)RNAs are RNA sequences that can bind an mRNA and silence its expression
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CHAPTER ǉ. INTRODUCTION

constitutive promoter, so no external control of the expression is possible. In this approach the
strength of the feedback is adjustable by changing either the sequence of LǏAe or of the K-turn
RNAmotif to which LǏAe binds (see Figure ǊB).

ǉ.ǉ.ǌ RĹŋĹŇňĹ ĹłĻĽłĹĹŇĽłĻ Ńĺ ĶĽŃŀŃĻĽķĵŀ ňŏňŉĹŁň

Quantitative biology is a ėeld of biological research that aims at describing biological processes
in a quantitative rather than in the classical qualitative manner. ĉe advancement of this ėeld has
been driven by the improvements of methods to quantitatively observe cellular processes (e.g.
Ěuorescent proteins) as well as by the increased usage of mathematical modeling to describe cel-
lular dynamics. ĉe lack of precision in conventional gene induction systems is a problem for
quantitative biology, because understanding the quantitative dynamics of cellular processes re-
quires the ability to apply precise perturbations to the system [ǊǍ]. A classical way of system
identiėcation is to perturb a systemand tomonitor the systems response to this perturbation. For
example, biological systems are oěen perturbed by genetic knockouts, thereby removing one reg-
ulator from the system. Slightly more dynamic perturbations can be applied using inducible pro-
moters, which allow to express genes conditionally and to some extend also to gradually change
the expression level of a gene. Even more informative are time-varying perturbations, because
they allow to explore the dynamic behavior of a system [Ǌǎ]. Time varying perturbations could
in principle be applied by inducible promoter systems, but for several reasons this would not be
effective in practice. First it is hard to predict the precise action of an inducer due to cell to cell
variability and the inherent stochasticity of gene expression. In addition such an approach would
require a detailed model of the dynamics of the induced protein, in order to predict the actual
protein level at different times. Without monitoring the expression level of the perturbed pro-
tein, signiėcant deviations between the actual and the desired protein proėle are to be expected.
However, by constantly observing the level of the perturbed protein and by adjusting the level of
induction based on this observation, it becomes feasible to impose precise, time-varying pertur-
bations on the level of a protein. In the following I will present such a feedback control system of
gene expression, which uses an external feedback loop to circumvent the problem of predicting
the precise effect of an inducer.

ǐ
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Figure Ǌ: Synthetic biology feedback loops. (A) Synthetic feedback loop by Becskei et al. [ǎ]
in which the expression of a fusion of the tetracycline repressor (tetR) and of a green Ěuores-
cent protein (EGFP) inhibits its own expression. TetR binds to the tet operator (tetO) sequence
within a modiėed λ-promoter in the absence of Doxycycline. If Doxycycline is present, this in-
hibition is relieved. (B) Translation-based feedback loop implemented by Stapleton et al. [Ǌǌ].
An mRNA carries a fusion protein of the ribosomal binding protein LǏAe and of a cyan Ěuores-
cent protein (ECFP). In addition the mRNA carries a sequence to which LǏAe binds, thereby
inhibiting its own translation as well as the translation of the ECFP fusion protein. (C) Feedback
system by Polynikis et al. [Ǌǋ] in which the fusion protein tetR-KĆB inhibits the expression of
a short hairpin (sh)RNA, of an EGFP protein and of itself. ĉe tetR protein binds the tetO se-
quencewhich is part of theHǉpromoter and theKĆBprotein acts as a transcriptional repressor
acting on a genomic region of Ǌ-ǋ kilobases, thus inhibiting the expression of the shRNA and of
the EGFP/tetR/KĆBmRNA. EGFP and the tetR-KĆB fusion protein are driven by the con-
stitutive ubiquitin promtoter (pUBC), but because the location of this promoter is close to the
Hǉ promoter, it is affected by the binding of tetR-KĆB to Hǉ. ĉis binding can be prevented
by the addition of doxycycline. ĉe shRNA was designed to bind the mRNA sequence of tetR-
KĆB, thereby inhibitxing translation of tetR-KĆB.ĉe binding strength of the shRNA can be
modulated by the addition of theophylline.
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CHAPTER ǉ. INTRODUCTION

ǉ.ǉ.Ǎ EŎŉĹŇłĵŀ ňŏłŉļĹŉĽķ ĺĹĹĸĶĵķĿ

A complementary approach to the implementation of a feedback system inside of the cell is to
work with an external feedback loop. In a feedback control system (closed loop controller), the
controlled process is observed, such that deviations between the control objective and the ob-
served behavior of the system can be corrected by modifying the control strategy. Automated
control is heavily used in technical systems. A simple example is a refrigerator which constantly
measures the temperature inside its cooling chamber and adjusts the cooling power based on this
observation and the seĨings provided by the user. ĉis allows to keep the temperature in the
cooling chamber constant even if the external temperature varies. In control engineering we dis-
tinguish between open loop control, in which the controller does not observe the system, and
closed loop (or feedback) control, where the controller is provided with some real timemeasure-
ment of the system (see Figure ǋ). Open loop control requires a good model of the controlled
system and of its environment, because in this control framework errors in the control strategy
cannot be compensated based on real-time observations. Because precise quantitative models of
gene expression systems are rare and gene expression shows a high stochasticity [ǊǏ–ǊǑ], closed
loop control, in which the controller updates the control strategy based on observations, is the
method of choice to control gene expression. Advantages of utilizing an external feedback loop
instead of an internal one to control gene expression are versatility and robustness with respect to
varying environmental conditions or to unmodeled system dynamics. With an external control
loop the control target can easily be changed and even dynamical targets, that vary over time, are
possible. In addition the control setup can be modiėed by adjusting the soěware computing the
control, whereas for a synthetic feedback genomicmodiėcation are necessary to alter the control
system.

A ĺĹĹĸĶĵķĿ ķŃłŉŇŃŀ ňŏňŉĹŁ ĺŃŇ ĻĹłĹ ĹŎńŇĹňňĽŃł

ĉe requirements for the implementation of an external closed loop control of gene expression
are (i) the ability to observe gene expression and (ii) the ability to act on gene expression. A
method to observe the amount of a certain protein inside a cell is the use of Ěuorescent proteins
[ǋǈ], which have the advantage that the measurement can be done on living cells and at the sin-
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Controller System
Input OutputReference

Controller System
Input OutputReference

Sensor
Measured output
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Error

A

B

Open-loop control

Closed-loop control

Figure ǋ: Open-loop and closed-loop control. (A) An open-loop controller computes the input
to the systembased only on the given reference and on the estimated state of the system. No feed-
back is used to compensate for control errors. (B) A closed-loop controller measures an output
of the system and uses this measurement to compute the input, thereby dynamically correcting
for control errors.

gle cell level. ĉe simplest method to inĚuence gene expression is the use of inducible promoters
which react to small compounds that are added to the media of the cells. To be able to dynam-
ically inĚuence gene expression, a controller needs to add and remove the inducible compound
from the cellular media. ĉis is possible a prioriwithmicroĚuidic devices in which cells can grow
but are constrained in their movement while Ěuidmedia is Ěowing through the device, providing
the cells with nutrients. By changing the composition of this Ěowing media, substances can be
both added to or removed from the cellular environment, while all compounds produced by the
cells are washed away, keeping experimental conditions constant.

ĉe topic of this thesis is the development of such a closed loop control system for gene ex-
pression in the yeast Saccharomyces cerevisiae. As a system to induce gene expression I will use the
high osmolarity glycerol (HOG) pathway (see Figure ǌ), which is a stress response pathway in
yeast, activated by an increase in osmolarity of the cellular media, which allows cells to adapt to
changes in the osmolarity [ǋǉ]. An increase of the osmolarity leads to a volume loss of the cell
due to water leaving the cell and the HOG pathway restores the cell volume by promoting the
synthesis of glycerol, thereby increasing the cellular osmolarity. Activation of the HOG pathway
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mediates the upregulation of almost ǎǈǈ genes [ǋǊ]. One of the genes most strongly and speciė-
cally activated by osmotic shock is STLȕ [ǋǋ, ǋǌ], which codes for a glycerol proton symporter³
in themembrane. In this work, I will use the promoter of STLȕ to drive the expression of a yellow
Ěuorescent protein. Activation of the HOG pathway has a quite severe effect on the cell, because
the expression of many genes is changed. In addition the pathway incorporates several natural
feedback mechanisms which deactivate the pathway aěer prolonged activation. Using a complex
signaling pathway which includes feedbackmechanisms to control gene expression is not an easy
task, but it was chosen in this context to demonstrate that control is feasible even in a complex
system, where many phenomena cannot be modeled or inĚuenced externally.

Osmotic

Fps1

Glycerol

pSTL1 yECitrine

pGPD1 GPD1

shock
Hog1

Gpd1

Hog1

cytoplasm

nucleus

mCh mCh

Figure ǌ: Schematic representation of theHOGpathway, the system Iwill use to activate gene ex-
pression. An osmotic shock triggers the phosphorylation of the protein Hogǉ which in response
translocates to the nucleus where it activates the expression of various genes. One of the acti-
vated genes is STLȕ whose coding sequence has been replaced here by the Ěuorescent marker
yECitrine. ĉe pathway incorporates natural feedback mechanisms, which are mediated mainly
via the activation and enhanced expression of the enzyme GPDǉ. In addition the membrane
glycerol transporter Fpsǉ closes in response to osmotic stress.

³A symporter is a type of membrane transporter which transports two different molecules in the same direc-
tion. ĉis allows to utilize a concentration gradient of one molecule (oěen an ion) to drive the transport of the
other molecule.
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ǉ.Ǌ CŃłŉŇĽĶŊŉĽŃłň

At the time when I started this thesis (in ǊǈǈǑ), no real-time control of gene expression had been
demonstrated. Developing a real-time control platform is not an easy task, because of different
technical obstacles that have to be addressed: the real-time control of a cellular process using Ěuo-
rescent proteins as amean to observe the controlled process requires automated and robust image
analysis. For traditionalmicroscopyexperiments, image analysis canbedone aěer the experiment
in a semi-automated fashion, whereas for closed loop control the images have to be analyzed in
real-time. For the control of single cells, each cell has to be identiėed automatically and tracked
over time. It is very important that these analyses work in a robustmanner, because the controller
works without manual intervention. In addition image analysis, tracking and the computation of
the control strategy have to be performed within the time in which two consecutive images are
taken, which limits the choice of methods that can be applied here. Last but not least the control
soěware needs to be able to drive the microscope as well as to control the microĚuidic device.
I implemented a closed loop control platform in MATLAB⁴, which can drive a Ěuorescent mi-
croscope via the open source soěware Micromanager [ǋǍ], performs automated image analysis,
cell-tracking and computation of the control strategy in real time and is able to control the mi-
croĚuidic device. Since the control soěware could prove useful for other closed loop control sys-
tems in biology, I made it available online ⁵. In particular the cell-tracking algorithm I developed
could be useful for other projects which rely on tracking yeast cells in time-lapse movies.

A closed loop control system for gene expression is a useful tool to probe the dynamics of cellu-
lar processes, because it allows to apply precise and time varying perturbations to the expression
level of a gene (see Figure Ǎ). In this case, the protein level which is the output of the controlled
systemwould act as an input to the investigated system. ĉis could for examplebe applied to study
the functioning of gene networks by applying oscillatory inputs [ǋǎ]. Here the temporal expres-
sion of a transcription factor could be controlled and it could be observed how the system reacts
to inputs of different frequencies. Similar approaches have led to new insights in the dynamics of
signaling cascades [ǋǏ, ǋǐ], but for gene networks such analyses have not been feasible up to now
due to the lack of methods to impose time varying proėles on input signals. Another use of such
a system is to study noise in gene expression, by ėxing the expression level of the controlled gene

⁴ĉeMathWorks, Natick MA, USA
⁵hĨp://www.msc.univ-paris-diderot.fr/~jannis/control_code
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CHAPTER ǉ. INTRODUCTION

to a certain value and observing the variability. ĉis would for example allow to determine the
gene expression noise depending on the gene expression level. In addition feedback control of bi-
ological processes might have implications in biotechnical industries. For example in metabolic
engineering, where cells are being optimized in their production of a certain substance, the tim-
ing of the expression of an enzyme is oěen crucial, while overexpressionmight have toxic effects.
In such a situation controlling the expression of one or multiple proteins in the cell could help to
optimize the metabolic production process.

ĉe closed loop control platform I present in this thesis is an important step towards these
goals. In addition it is an ideal tool to perform real-time experiments on yeast cells, real-time
meaning that the experimental conditions can depend on a readout of a cellular behavior. ĉis
could for example be used to synchronize the onset of a stimulus with cellular events like cell
division or the upregulation of a certain protein.

In Ǌǈǉǉwe showed that it is possible to control the signaling activity of theHOG signaling cas-
cade in vivousing a simple proportional-integral (PI) controller [ǋǑ], whichwas the ėrst real-time
control approach for a signaling pathway. Activation of the HOG pathway leads to the phospho-
rylation of the proteinHogǉwhich is subsequently imported into the nucleus where it inĚuences
the expression of various genes [ǋǉ]. Using a Ěuorescent label forHogǉ, we constantlymonitored
the Hogǉ nuclear localization and controlled it using a feedback controller. Because of the natu-
ral feedback mechanisms within the HOG pathway only a limited set of control targets could be
reached.

Later in Ǌǈǉǉ two other papers demonstrating feedback control of a cellular process have been
published. ToeĨcher et al. used optogenetics to control the activity and localization of a signal
transduction protein (PIǋK⁶) in eucaryotic cells at the single cell level [ǌǈ]. Also using optoge-
netics, Milias-Argeitis et al. were able to control the expression of a gene in a population of yeast
cells within a chemostat [ǌǉ] to a constant target value. ĉe two control approaches as well as a
comparison to my work will be discussed in Section Ǐ.ǌ.

In ǊǈǉǊ we presented a feedback control framework for gene expression [ǌǊ], which is able
to control gene expression of yeast gene in both populations and single cells. ĉis control plat-
form allows the control of gene expression in both populations of cells or single cells with either
time-constant or time-varying target functions at high precision. ĉe range between the lowest

⁶Phosphoinositide ǋ-kinase
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• real-time observation
• real-time computation of control
• automated image analysis
• possible biological feedback 
  mechanisms
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Figure Ǎ: Motivations for controlling gene expression. (A-B)Oěen we are interested in under-
standing the effect that a protein A has on the dynamics of another protein B. A way to study the
inĚuence that protein A has on B is to apply precise time-varying perturbations to the concen-
tration of A and to observe the response of protein B. (C) Precise time-varying perturbations of
a protein level can be achieved using real-time feedback control. Protein A is fused to a Ěuores-
cent protein (FP) and controlled by an inducible promoter. A feedback controller (black box)
decides, based on the measurement of the A-FP fusion protein, which inputs to apply such that
the concentration of protein A will follow a desired proėle. (D-E) Applications of a feedback
controller for gene expression: (D)ĉe dynamics of biological networks could be investigated
by controlling the concentration of one network node and observing the response of the other
network nodes. (E)ĉe yield of metabolic networks could be optimized by ensuring a speciėc
temporal expression proėle for certain enzymes. (F) Features that are implemented today into
cells in the ėled of synthetic biology (e.g. stable oscillations) could be tested or even replaced by
external feedback control.
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behavior of the system for different inputs.

ǉ.ǋ OŊŉŀĽłĹ

ĉis document is organized as follows. InChapter Ǌ I will present background information about
the HOG pathway as well as an overview about methods to induce gene expression in yeast.
Chapter Ǌ also contains a brief introduction in feedback control systems and state estimation.
In Chapter ǋ Materials andMethods, I present methods to detect and follow cells in movies and
give an overview about the microĚuidic devices used in this work. ĉe development of a feed-
back control system for the HOG signaling cascade and a ėrst computational investigation of
how the HOG system can be used to control gene expression are presented in chapter ǌ. Chap-
ter Ǎ describes the gene expression control platform and provides the main results of this thesis.
In Chapter ǎ I show how this platform can be extended to use another method of gene induc-
tion which is based on the methionine inducible promoter. A discussion of this work as well as a
comparison to related work and conclusions can be found in Chapter Ǐ.

ǉǎ



2
Background

In this thesis I describe the development of a platform to control gene expression in yeast using
the HOG pathway as a means to inĚuence gene expression. Because this is an essential part of
my work, I give a short introduction on yeast cells, their osmotic stress response and means to
introduce gene expression here. In addition I will introduce basic notions of feedback control,
focusing on the two control methods I will apply later, proportional integral derivative (PID)
control and model predictive control (MPC). ĉis chapter is not intended to give an extensive
summary of these different ėelds, but instead aims at providing a brief introduction for readers
not familiar with these subjects.
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CHAPTER Ǌ. BACKGROUND

Ǌ.ǉ YĹĵňŉ ĵłĸ Ľŉň ŇĹňńŃłňĹ ŉŃ ŃňŁŃŉĽķ ňŉŇĹňň

Ǌ.ǉ.ǉ YĹĵňŉ ĵň ĵ ŁŃĸĹŀ ŃŇĻĵłĽňŁ

Yeasts are unicellular eucaryotic microorganisms that belong to the class of Fungi. Yeasts are
among the oldest domesticated species, since they have been used for thousands of years for bak-
ing and brewing. In the ǉǐǋǈs it was ėrst recognized that yeast cells are living organisms and
ĉeodor Schwann who was studying alcoholic fermentation in yeast at that time called them
Zuckerpilz (German for sugar fungus), because he observed the ability of beer yeast to convert
sugar to alcohol [ǌǋ, ǌǌ]. In ǉǐǋǐ Julius Meyen translated this name to Latin which gave rise
to the name Saccharomyces cerevisiae [ǌǌ] (saccharum is Latin for sugar, mycemeans fungus and
cerevisiaemeans of beer). Schwann was not the ėrst one to investigate alcoholic fermentation. In
ǉǏǐǑ Antoine Lavoisier was the ėrst person giving an estimate of chemical changes occurring in
alcoholic fermentation [ǌǍ]. Between ǉǐǍǍ and ǉǐǏǍ Louis Pasteur ėnally deciphered the role
of yeast in alcoholic fermentation and was the ėrst one to distinguish between aerobic and anaer-
obic utilization of sugar [ǌǍ]. Today S. cerevisiae is one of the most important model organisms
in biology. Reasons for this are its relatively fast reproduction cycle (∼ Ǒǈ minutes) and the ease
of genetic manipulation. In addition S. cerevisiae is non-pathogenic and simple to grow in a lab-
oratory environment. In ǉǑǑǎ it was the ėrst eucaryotic organism for which the whole genome
had been sequenced [ǌǎ]. ĉe yeast genome can be relatively easily altered by homologous re-
combination, which allows the introduction of foreignDNAsequences at speciėc locations in the
genome. ĉismakes it possible to delete genes by replacing themwith amarker gene (see Section
Ǌ.ǉ.Ǌ) or to tag proteins with Ěuorescent markers. Consequently, a gene deletion library includ-
ing most of the approximately ǎǈǈǈ yeast genes [ǌǏ, ǌǐ], as well as a library tagging each protein
with a Ěuorescent marker [ǌǑ, Ǎǈ] have been constructed. ĉe biological role of about ǐǍ ƻ of
the protein coding genes in S. cerevisiae have aĨributed functions [Ǎǉ] and the Saccharomyces
Genome Database¹ (SGD) provides manually curated information for most genes.

Ǌ.ǉ.Ǌ GĹłĹŉĽķ ŁĵłĽńŊŀĵŉĽŃł Ľł ŏĹĵňŉ

One reason for the success of S. cerevisiae as a model organism is the ease of genomic manipu-
lation in this organism. Synthetic DNA can easily be introduced using different methods like

¹hĨp://www.yeastgenome.org
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electroporation or lithium acetate treatment. In addition S. cerevisiae shows a high frequency of
integration of external DNA into the genome, in particular if the introduced DNA is linear [ǍǊ].

Novel genes can be introduced in S. cerevisiae either by integrating them into the genome or
they can rest on plasmids within the cells. ĉe process of introducing exogenous geneticmaterial
into yeast cells is called transformation. In both methods a selectable marker is required to select
for cells which carry the novel gene. ĉis marker is usually a resistance to a certain drug or a gene
that complements a speciėc auxotrophy²

Expression of a gene from a plasmid bears two problems. First the plasmid can be lost during
division and second the copynumber of the plasmid in the cell is neither knownnor constant over
time. While the ėrst problem can be overcome by using plasmids carrying a centromere (CEN
plasmids), which ensures that each daughter cell maintains at least one plasmid during division,
the second problem can only be solved by integrating the DNA sequence into the genome.

Integration of DNA sequences into the genome is possible via homologous recombination, a
cellular process responsible for the repair of DNA double-strand breaks and for crossover during
meiosis. Homologous recombination is a genetic exchange between pairs of homologous DNA
sequences. It can be used to introduce exogenous DNA fragments at speciėc locations in the
genome. A sequence homology to the genomic location to be altered is placed in the DNA to be
introduced. Positive clones can then be identiėed with a selective marker.

CĹŀŀŊŀĵŇ ňĽĻłĵŀĽłĻ

ĉe natural environmental conditions of unicellular organisms like yeasts are subject to perma-
nent Ěuctuations. Factors like temperature, pH or nutrient levels and sources vary with time in a
natural environment and the cell needs to cope with these changes [Ǎǋ–ǍǍ]. An example is the
transfer of yeast cells from amedia containing glucose as the main energy source to a media con-
taining galactose. To metabolize galactose, the cell has to convert it ėrst to glucose-ǉ-phosphate,
which then can be used for energy production in the glycolysis, one of the main metabolic path-
ways. ĉe enzymes which catalyze this pathway are only expressed if galactose is present and
glucose is not present [Ǎǎ]. ĉis can be understood in the light of evolution. Cells need to spend
their resources economically in a competitive environment, so they produce enzymes only when

²Auxotrophy is a term for the inability of an organism to synthesize a particular compound which is vital for
the cell.
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they actually need them.
Cells also need to respond to signals which do not pass the cellularmembrane. ĉis is achieved

by signaling pathways that are activated by cell surface receptors, which sense external signals
and in turn activate one ore more intracellular signaling pathways. In addition to the cell surface
receptors there are cytoplasmic receptors, which respond tomolecules that can cross the cellular
membrane. A signaling pathway transmits the sensed information intracellular effector proteins
which mediate the appropriate response. Signaling pathways are oěen comprised of a chain of
signaling proteins which activate each other in cascade. Another process of intracellular signal
transduction makes use of second messenger molecules, which are small molecules produced in
response to receptor activation which also transfer a signal to certain target molecules inside the
cell. ĉe function of signal transduction is to amplify signals, to integrate different stimuli and of
course to transfer information to the appropriate location inside the cell.

Ǌ.ǉ.ǋ OňŁŃŉĽķ ňŉŇĹňň ŇĹňńŃłňĹ Ľł ŏĹĵňŉ

In the following section I will describe the osmotic stress response in yeast, which I will use as a
means to activate gene expression in my control setup. Amajor reason for choosing this pathway
in favor of other gene activation systems was that it incorporates several feedback mechanisms
which render it difficult to control the pathway, allowingme to demonstrate that feedback control
of biological systems is even functional in difficult cases where not all system dynamics can be
accurately modeled.

OňŁŃŉĽķ ňļŃķĿ

An example of an environmental factor to which cells need to react is a change of the osmolar-
ity of the surrounding media. ĉe osmolarity of a solution depends on the number of molecules
solved in a certain volume of the solution. ĉe measure of osmolarity is osmoles per liter (os-
mol/L), which is deėned as the number of osmotically active particles (inmoles) per liter within
a solution. An osmotic pressure arises if two solutions with different osmolarities are separated
by a semipermeablemembrane, that is amembranewhich is permeable only to certainmolecules.
For example the cell membrane of yeast forms such a semipermeable membrane: water can dif-
fuse freely through themembrane, whilemost small and largemolecules cannot. If at some point
the osmolarity inside the cell is higher than the one of the external media, water will Ěow inside
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the cell such that the osmotic pressures inside and outside the cell are balanced. ĉis increases
the osmotic pressure. On the other hand, if the osmolarity is higher in the external media, the
cell will loose water. Cell volume regulation is vital for cells. In case the turgor ³ pressure rises
too high (hypoosmotic shock), the cell is in danger of bursting. On the other hand, a drop in
cell volume (hyperosmotic shock) can also affect the functioning. First of all the drop in volume
affects the concentration of all molecules within the cell. In addition it has been shown that in
response to severe osmotic shocks, the concentration of solubles within the cell can reach so high
that their diffusion is affected due to crowding [ǍǏ]. Both hyper- and hyposomotic shocks have
severe impacts on cellular functioning and the cell needs to deal with these in order to be viable.
Two distinct signaling pathwaysmediate the cellular response to hyper- and hypoosmotic shock.

cell
H
2
O cell H

2
O

A Bisoosmotic hyperosmotic

Figure ǎ: Cell size change aěer an osmotic shock. (A) Under isosmotic conditions the intra-
cellular osmolarity is only slightly higher than in the external media, which creates a hydrostatic
pressure (turgor pressure) which pushes outward on the cell wall (brown). ĉe orange dots rep-
resent osmotically active compounds. (B) In hyperosmotic conditions, the external osmolarity
is signiėcantly higher than the normal one, which leads to an efflux of water from the cell (the
turgor pressure decreases). In condition of severe stress, the cytoplasm can even partly detach
from the cell wall (plasmolysis). Sound functioning of cellular processes requires to restore the
osmotic balance and thereby the cell volume to its original size.

³Turgor pressure describes a pressure that acts from inside on the cell membrane and is caused by the osmotic
Ěow of water inside the cell which is driven by the high solute concentration inside the cell.

Ǌǉ



CHAPTER Ǌ. BACKGROUND

AĸĵńŉĵŉĽŃł ŉŃ ŃňŁŃŉĽķ ňŉŇĹňň: TļĹ HOG ńĵŉļŌĵŏ

As mentioned above, the main problem of an elevated osmolarity in the media for the cell is a
loss of water and the resulting shrinkage of the cell volume. ĉe adaptation to the hyperosmotic
stress is mainly mediated by the accumulation of the small osmolyte glycerol, thereby increasing
the internal osmolarity and restoring the water balance. Production of glycerol is mediated by
the high osmolarity glycerol (HOG) pathway. I will give a quite detailed description of theHOG
pathway here, because its dynamics are of importance for the control approaches I will present
in this thesis. In chapter ǌ I will present a control approach to drive the activation of the HOG
cascade and in chapter Ǎ I will show how this pathway can be utilized to control gene expression.

ĉe events following an osmotic shock include a rapid water loss of the cell (see Figure Ǐ).
ĉe osmotic up-shiě is sensed by the two membrane sensors Slnǉ and Shoǉ which activate the
HOGcascade, thereby leading to the phosphorylation ofHogǉ and subsequently to the import of
Hogǉ into the nucleuswithin about ǋminutes aěer an osmotic shock [ǍǏ–ǍǑ]. Inside the nucleus
Hogǉ alters the expression of a vast number of genes [ǋǌ, ǎǈ, ǎǉ]. In addition there is a direct
stimulation of the enzyme phosphofructo-Ǌ-kinase by Hogǉ [ǎǊ, ǎǋ], which promotes glycerol
production by producing the glycolytic activator fructose-Ǌ-ǎ-bisphosphate. Moreover glycerol
production is increased by inducing the expression of the glycerol producing enzymes glycerol-
ǋ-phosphate dehydrogenase (Gpdǉ) and glycerol phosphatase (GppǊ). Another mechanism to
increase the glycerol concentration is to prevent glycerol from leaking out of the cell. In response
to an osmotic shock, the membrane glycerol channel Fpsǉ closes. ĉis aquaglyceroporin plays
a major role in controlling the efflux and uptake of the osmolyte glycerol. Under normal and
hypoosmotic conditions Fpsǉ is open which allows glycerol to leak out of the cell and mutants
lacking Fpsǉ are sensible to hypoosmotic shock [ǎǌ], while under high osmotic conditions the
channel closes and prevents glycerol from leaking out of the cell [ǋǉ]. Aěer Ǌǈ-ǋǈ minutes the
osmotic balance has been restored by glycerol production [ǎǍ] and Hogǉ is exported from the
nucleus.
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Figure Ǐ: Events following an osmotic shock. ĉe change of the cell size, the Hogǉ phosphoryla-
tion state and the cellular glycerol level are schematically represented in the center of the image.
(ǉ) Aěer an increase of the external osmolarity (green) water Ěows out of the cell (blue arrows),
which leads to a rapid loss in cell size. (Ǌ)Membrane receptors (blue) activate theHOGpathway
which leads to the phosphorylation of Hogǉ (red). (ǋ) Phosphorylated Hogǉ performs several
actions. (a) ĉe activation of enzymes involved in glycerol synthesis. (b) Translocation to the
nucleus. (ǌ) In the nucleus Hogǉ induces a large transcriptional response. Glycerol synthesis is
increased by inducing the gene GPDȕ, coding for the enzyme glycerol-ǋ-phosphate dehydroge-
nase. Negative feedback loops lead to the inactivation of the HOG cascade. (Ǎ) ĉe increased
production of glycerol leads to water inĚux and the cell size recovers. Hogǉ is exported from the
nucleus. (ǎ) ĉe cell has restored its osmotic balance. Cell size has recovered so the cell has
adapted to the changed environment.
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Figure ǐ: HOG pathway schema. ĉe pathway can be grouped into three modules, the sensory
modules Slnǉ (green) and Shoǉ (pink) both sense osmotic increases and transmit the informa-
tion to the mitogen activated protein (MAP) kinase module (blue). ĉe two pathways converge
on the MAPKK PbsǊ which in turn activates Hogǉ by phosphorylation. Phosphorylated Hogǉ
translocates to the nucleus where it activates the expression of osmoadaptive genes. Adaptation
to the hyperosmotic shock is achieved by increasing the intracellular glycerol level. ĉe enzyme
glycerol-ǋ-phosphate dehydrogenase synthesizes glycerol, while the membrane glycerol channel
Fpsǉ closes in response to an osmotic shock, which prevents glycerol from leaking out of the cell.
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HOG PĵŉļŌĵŏ ňŉŇŊķŉŊŇĹ

ĉe HOG pathway is one of the best characterized eucaryotic signaling pathways. While the
structure of this pathway is being investigated for Ǌǈ years [Ǎǐ], interest has only recently been
drawn to the dynamical properties of the pathway [ǎǍ]. ĉeHOG pathway can be grouped into
three modules (Figure ǐ), the Slnǉ, the Shoǉ, and a mitogen activated protein (MAP) kinase
module. ĉe Slnǉ and Shoǉmodules are named aěer their sensory proteins Slnǉ and Shoǉ. Both
pathways sense osmotic changes (the exact mechanistic functioning of these activations are un-
known) and converge on the signaling proteinPbsǊ. ĉeSlnǉmodule is similar to a bacterial two-
component system⁴ [ǋǉ]. Becauseosmotic changes inbacteria are sensedby two-component sys-
tems (for example the EnvZ/OmpR system in E.coli [ǎǎ]), it is likely that this branch has evolved
from such a system. Slnǉ is a transmembrane protein sensing osmotic changes, which is active
under ambient conditions and gets inactivated by high osmolarities. ĉe Slnǉ branch responds
linear up to an external salt concentration of ǎǈǈ mM [ǎǏ] and is able to integrate a fast vary-
ing signal over time [ǋǏ]. Cells lacking the Slnǉ branch show no response to slightly increased
osmolarity and the general response to an osmotic shock is slower as in wild type cells.

ĉe second branch activating Hogǉ is the Shoǉ branch which is also activated in response to
high osmolarity. It is not clear why two parallel branches activate Hogǉ, in fact the Shoǉ branch
seems not to be connected to Hogǉ in other yeasts [ǎǐ]. In contrast to the linear response of
the Slnǉ module, the Shoǉ branch is activated in an all or none fashion. It has been proposed
that phosphorylatedHogǉ deactivates Shoǉ, which could explain such dynamics [ǎǏ]. ĉe Shoǉ
branch is not capable of integrating a fast varying signal, and cells lacking this branch still react to
osmotic stress in a way similar to wild type cells [ǋǏ].

ĉe third module of the pathway is made up by a MAP kinase module. MAP kinase modules
are signaling cascades involved in many cellular processes such as stress response or the regula-
tion of differentiation and proliferation [ǎǍ], which are highly conserved from yeasts to humans.
ĉey consist of three kinases which phosphorylate each other in a cascade. ĉe ėnal kinase in
this chain is termed the mitogen activated protein kinase (MAPK, in this case Hogǉ) and phos-
phorylates different effector proteins in response to activation. ĉe MAPK is activated by the
upstreamMAP kinase kinase (MAPKK, in this case PbsǊ), which is in turn activated by a MAP

⁴Bacterial two-component systems sense and respond to environmental changes. ĉey consist of amembrane
associated sensor and of a response regulator (oěen a transcription factor).
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kinase kinase kinase (MAPKKK, in this case SskǊ/ǊǊ and Steǉǉ). ĉis means that the Slnǉ and
Shoǉ pathways converge on the MAPKK PbsǊ which then activates Hogǉ by phosphorylation.
Phosphorylated Hogǉ translocates into the nucleus where it activates different transcription fac-
tors by phosphorylation [ǋǉ].

FĹĹĸĶĵķĿ

ĉeHOGpathway containsmultiple negative feedback loops that operate ondifferent time scales
[ǋǐ] and lead to the inactivation of the pathway aěer about Ǌǈ-ǋǈ minutes (see Figure Ǒ). One
feedback is mediated by the transcriptional activation of glycerol producing enzymes by Hogǉ.
But for a single osmotic shock the time-scale of the pathway adaptation is faster than the time-
scale for protein production [ǋǐ]. In addition it has been shown that adaptation of the pathway
requiresHogǉ kinase activity, but not protein production ability [ǎǑ], suggesting that dominating
feedback mechanisms are not mediated by transcriptional changes.

In addition the pathway shows perfect adaptation, meaning that irrespectively of the strength
of the osmotic shock (as long as it is within physiological bounds), pathway activationwill always
fall back to its initial activation state aěer the cell has adapted. ĉis indicates that there exists an
integral feedback loop somewherewithin the pathway,most likely involving glycerol synthesis ac-
tivated by Hogǉ kinase activity [ǎǑ]. Aěer the cell has restored its osmotic balance by producing
enough glycerol, the pathway is no longer activated, which triggers the export of Hogǉ from the
nucleus, since different phosphatases are constantly dephosphorylating active Hogǉ and other
MAPKs [Ǐǈ]. In addition it has also been shown that active Hogǉ inactivates Shoǉ by phospho-
rylation [ǎǏ], which might also contribute to pathway inactivation.

CŇŃňňŉĵŀĿ

ĉe osmotic stress response pathway interacts with different cellular pathways like the general
stress response pathway or the cell integrity pathway [ǋǉ]. Different stresses activate in addition
to their speciėc stress response a general stress response. ĉe general stress response pathway
enables a cell exposed to a mild type of stress to cope beĨer with a more severe, different type of
stress [Ǐǉ]. Stress responses connected by the general stress response include nutrient starvation,
oxidative stress, heat shock and hyperosmotic shock. ĉe general stress response is mediated
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Figure Ǒ: Response of Hogǉ nuclear localization and of the osmosensitive gene STLȕ to a step
osmotic input. (A)Observation ofHogǉ nuclear localization aěer transferring cells in amicroĚu-
idic device from normal media to sorbitol enriched (ǉM) media. ĉe delay of the response is in
part due to the delay of the microĚuidic device which is between Ǌ and ǋ minutes. Aěer that the
pathway reaches maximal activation aěer about Ǐ minutes aěer which Hogǉ nuclear localization
decreases due to the feedback mechanisms in the pathway. Aěer about Ǌǈ minutes pathway ac-
tivity falls back to the level before the shock, even though the osmotic input is still present. (B)
Gene expression response following a step osmotic input of ǉM sorbitol. ĉe Ěuorescent protein
yECitrine has been placed under the osmoresponsive STLǉ promoter. An expression increase
can be observed approximately Ǌǈ minutes aěer the onset of the stress. ĉe expression response
is transient and reaches its maximum about ǉǈǈ minutes aěer the step input with a value of ǎǈǈ
Ěuorescent units (f.u.).

by the transcription factors MsnǊ and Msnǌ, which are in addition to Hogǉ activated by high
osmolarity. It has been shown that the HOG and the general stress response pathway interact on
both signaling and promoter levels [ǏǊ].

MŃĸĹŀĽłĻ

ĉeHOGpathway is one of the best studied signaling pathways and serves as an archetypic path-
way for eucaryotic MAP kinase pathways, which is illustrated by the vast number of models that
have been proposed for this pathway [ǋǐ, ǎǏ, ǎǑ, Ǐǈ, ǏǊ–Ǐǎ]. ĉese include detailed kineticmod-
els [Ǐǈ], simple linear models [ǎǑ] and gene regulatory models [ǏǊ].

ĉemost detailed model is the one by Klipp et al.[Ǐǈ], which consists of ǋǊ ODEs and Ǐǈ pa-
rameters (see Figure ǉǈA). It takes into account the volume change caused by the osmotic shock.
In addition to theHogǉ cascade it also includes gene expression andmetabolismmodules. Differ-
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ent simpliėed versions of this model have been proposed, one of them modelling the frequency
response of the pathway (see Figure ǉǈB) [Ǐǋ, Ǐǌ]. Two different linear models have been de-
veloped in the lab of Alexander van Oudenaarden (see e.g. Figure ǉǈC) [ǋǐ, ǎǑ]. ĉese models
have been developed to analyze the frequency response of the pathway and to study the feedback
mechanisms in the HOG pathway.

Ǌ.ǉ.ǌ CŃłŉŇŃŀ ŊňĽłĻ ŉļĹ HOG ķĵňķĵĸĹ

In this thesis I present a gene expression control platform which utilizes the HOG pathway to
activate gene expression. One reason for choosing this pathway was the fact that in addition to
the gene expression response it is alsopossible tomeasure the activation stateof theHOGcascade
by observing the nuclear localization of Hogǉ (see Section ǋ.ǉ.ǋ). ĉis also allowed me to start
the development of the control platformwith a controller which drives the activation state of the
HOGcascade (seeChapter ǌ). However themain reason for choosing theHOGpathway andnot
one of the gene inducible systems described in the next section was to make control challenging.
In contrast to synthetic gene inducible systems, the HOG cascade has a fairy complex structure
including several feedback mechanisms, which makes it difficult to control this system.

Ǌ.Ǌ IłĸŊķĽĶŀĹ ńŇŃŁŃŉĹŇň Ľł ŏĹĵňŉ

Cells alter their gene expression in response to different environmental changes, for example in
response to changing nutrient levels. Promoters which control the expression of a gene depend-
ing on external signals are called inducible promoters. ĉese promoters are of natural origin, but
can oěen be transferred to other organisms. Signals inĚuencing inducible promoters are oěen
small molecules which are added to the media of the cells, but there exist also promoters that
can be activated by light or by temperature shiě [ǉǏ, ǏǏ, Ǐǐ]. For the gene expression control I
will utilize the HOG cascade as an inducible gene system, but I also give a short review about
other methods of gene activation in yeast, because I will later show that the control platform I
propose is not limited to use the HOG cascade, but can also control gene expression via other
gene induction systems like the methionine inducible promoter (see Chapter ǎ).

Among themost common inducible promoters inS. cerevisiae are theGALȕ,GALț andGALȕȔ
genes, which are strongly repressed in the presence of glucose and activated in the presence of
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Figure ǉǈ: Different models of the HOG pathway. (A)Model of Klipp et al. [Ǐǈ] including gene
expression and metabolic response to HOG pathway activation. ĉe model consists of ǋǊ ODE
terms and Ǐǈ parameters. BModel by Zi et al. [Ǐǌ] developed to investigate the response of the
HOG cascade to oscillating inputs. (C) ĉe minimalistic linear model by Muzzey et al. [ǎǑ]
which has been used to identify the dominating feedbackmechanism in the HOG cascade. (ĉe
ėgures have been taken from the corresponding publications.)
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galactose by theGalǌ activator [ǏǏ]. Also the promoters of theCUPȕ and the PHOș genes which
are activated by Cu +-ions and inorganic phosphate respectively are widely used in yeast [ǏǏ].

Ǌ.Ǌ.ǉ MĹŉļĽŃłĽłĹ ŇĹĻŊŀĵŉĹĸ ńŇŃŁŃŉĹŇň

ĉeMETȗ andMETȖș genes code for the enzymesATP sulphurylase andO-acethyl homoserine
sulphydrylase respectively, both involved in the synthesis of the amino acid methionine. Both
promoters are inhibited by the presence of methionine and can therefore be used as externally
repressible promoters. Comparing the two promoters shows that theMETǋ promoter is weaker,
but also more strictly repressed than theMETǊǍ promoter [ǏǑ].

Ǌ.Ǌ.Ǌ TĹŉŇĵķŏķŀĽłĹ ńŇŃŁŃŉĹŇň

ĉe promoters presented above share the limitation that they are natural promoters in yeast,
which limits their use in probing cellular dynamics, because activating these promoters will in
addition trigger a natural response in the cell. For example shiěing the cells carbon source from
glucose to galactose to activate the GAL promoters results in severe changes within the cellular
metabolism. In addition there may exist unwanted upstream effects, for example the CUPȕ gene
is not only affected by copper, but also by heat shock, glucose starvation and oxidation stress
[ǐǈ]. ĉese effects are disadvantageous of course if one wants to study the effect of inducing a
protein. At least the problem of an additional natural response can be circumvented by intro-
ducing gene activation systems from other species, that are not naturally present in yeast. ĉis
independence from the natural cellular pathways is called “otrhogonality” in the synthetic biol-
ogy community. An example is the tetracycline dependent gene expression system, which stems
fromGram-negative bacteria [ǉǐ, ǐǉ–ǐǋ]. ĉesebacteria developed a resistance to the antibiotics
from the tetracycline family, which relies on the efflux protein tetA (A for antiporter⁵), which can
pump tetracycline out of the cell [ǐǌ]. tetA has negative effects on the cell growth and viability
of E. coli [ǐǍ] and is only expressed in the presence of tetracycline or one of its relatives. ĉis
mechanism works by the expression of a tet repressor protein (tetR), which binds the promoter
of tetA and its own promoter, thereby repressing expression of itself and of tetA. Binding of tetra-
cycline to tetR lowers its affinity to the tetO operator, wherefore the genes can be expressed in

⁵Similar to a symporter, an antiporter is a membrane transporter which transports two different molecules,
but opposed to the symporter not in the same, but in opposite directions.
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the presence of tetracycline.

TĹŉ-Ńĺĺ ňŏňŉĹŁ

Early studies using the tetR repressor protein in eukaryotes cells placed the tetO operator se-
quence within the promoter of a target gene, which enabled the repression of the promoter in the
absence of tetracycline [ǐǎ–ǐǐ]. In ǉǑǑǊ Gossen and Bujard constructed the Tet-off system, by
fusing the tetR protein with the activating domain of viron protein ǉǎ (VPǉǎ) from the herpes
simplex virus [ǐǑ]. ĉis generated the tetracycline controlled transactivator tTA, which activates
transcription in the absence of tetracycline on a minimal promoter derived from the human cy-
tomegalovirus promoter IE combinedwith tet operator sequences. To use this system it is neces-
sary to place the gene to be inĚuenced under the control of the tet promoter and to constitutively
express tTA.ĉese constructs have been developed for humanHeLa cell lines, but they function
also in S. cerevisiae [Ǒǈ].

TĹŉ-Ńł ňŏňŉĹŁ

In practice the Tet-off system has several drawbacks. One is the need of sustained tetracycline
presence to maintain an uninduced expression state, because excessive exposure of cells to tetra-
cycline might have side effects. Also, once tetracycline has been added to the media, it is not
always easy to remove it, because exchanging the cellular media requires additional treatments
like centrifugation or advanced setups like microĚuidic devices. To develop a system which can
be switched on in the presence of tetracycline, a randommutagenesis of the tetR protein has been
done, to ėnd a variant of tetR that can bind the tetO operator only in the presence of tetracycline
[Ǒǉ]. ĉis resulted in ėnding the reverse tet repressor (rTetR), which shows the desired bind-
ing characteristics. Fusing rTetR with VPǉǎ resulted in the reverse transcriptional transactivator
(rtTA). rtTA induces gene expression in the presence of tetracycline. In addition rtTA shows a
beĨer response to the tetracycline analog doxycyline than to tetracycline [Ǒǉ].

IŁńŇŃŋĹŁĹłŉň

ĉe Tet-on system has been further improved by randommutagenesis. ĉis resulted in a system
with lower basal expression and an increased doxycycline sensitivity [ǑǊ]. In addition the se-
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Figure ǉǉ: Tetracycline gene induction systems. (A) Tet-off system. ĉe tetracycline controlled
transactivator (tTA) suppresses the tetracycline promoter (ptet) in the presenceof tetracycline. If
no tetracycline is bound, tTA dissociates from the promoter so the polymerase can bind to it. (B)
Tet-on system. ĉe reverse tetracycline controlled transactivator (rtTA)binds and suppresses the
tetracycline promter in the absence of tetracycline.

quenceof the rtTAhasbeenoptimized for expression inhumancell lines. An improved system for
yeast has been proposed by Bellí et al., which uses transcriptional repressors fused to TetR or re-
spectively rTetR to decrease basal expression [Ǒǋ]. ĉis repressor prevents gene expressionwhen
tTA or respectively rtTA are not bound, thereby reducing the basal expression level. Nevozhay et
al. engineered a tetracycline inducible gene activation system with a linear dose response curve,
by introducing a negative feedback loop acting on the expression of the tetR repressor [Ǒǌ].

Ǌ.Ǌ.ǋ OńŉŃĻĹłĹŉĽķ ķŃłŉŇŃŀ Ńĺ ķĹŀŀŊŀĵŇ ĵķŉĽŋĽŉĽĹň

All chemical compounds that are being used to alter cellular behavior share the limitation that
the timescales on which they can act are rather slow because they need to be added to the media,
diffuse into the cell and perform their function within the cell. ĉis limitation does not apply to
the recently emerging ėeld of optogenetics, in which light-sensitive proteins are used to control
cellular processes. ĉe name optogenetics stems from the fact that these systems react to light
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(opto) and are encoded genetically. Because the temporal and spatial resolution with which light
canbe applied to cells or cellular regions excels that of anypreviousmethod, optogeneticmethods
are the ėrst choice to control fast cellular processes like signaling, single cells or eventswithin sub-
cellular regions. Optogenetic techniques are based on a light-induced conformation change of a
protein which can stem from light-sensitive bacteria [ǑǍ], from plants [ǉǏ], or animals [Ǒǎ]. By
using these light-sensitive proteins directly [ǑǏ] or by combining them with signaling receptors
[Ǒǐ] it has become possible to act on cellular systems by using light with a proper wavelength.

So far, the most prominent use of optogenetics has been in the ėeld of neuroscience, because
stimulating neurons requires a high temporal precision which is, at least in combination with the
cellular speciėcity optogenetic techniques offer, currently not achievable with other techniques
[ǑǑ]. ĉe ėrst genetically encoded control of neuronal activity was published by Zemelman et al.
in ǊǈǈǊ [Ǒǎ], who fused aDrosophila photoreceptor to the α-subunit of a largeG-protein in order
to control the signaling activity in rat neurons in vitro. Other approaches used optically gated ion
channels originating from green algae [ǑǏ, ǉǈǈ] or from Archaea [ǉǈǉ] to stimulate or inhibit
neurons. ĉese developments gave researchers the ability to control the neuronal activity even
in liveDrosophila, which enabled them to trigger speciėc behaviors like jumping or wing beating
in fruit Ěies [ǉǈǊ]. By stimulating arousal associated neurons, Adamantidis et al. managed to
wake up sleepingmice using an optogenetic control [ǉǈǋ]. Han et al. showed that an optogenetic
control of neurons is feasible in primates [ǉǈǌ].

Apart from controlling neuronal activity, optogenetic techniques offer also unprecedented
opportunities to act on cellular signaling dynamics. A tool that has been applied in many ap-
proaches controlling cellular signaling is the light based association of phytochromes (phy) and
phytochrome interacting factors (PIF) from Arabidopsis thalina [ǉǈǍ]. Phy can switch between
two conformations in response to red or infrared light and the conformation resulting from ex-
posure to red light binds PIF. Exposure to infrared light releases the binding between phy and
PIF.ĉis tool has been used to control gene expression in yeast cells by fusing phy to the GALǌ-
binding-domain (phy-GBD) and PIF the GALǌ activation domain (PIF-GAD) [ǉǏ].

Especially for the control of cellular signaling, where precise timing is important optogenetic
techniques are likely to be more widely used in the future, but in order to make them widely
accessible by the scientiėc community, light delivery protocols as well as possibilities to read out
the activation state have to be improved [ǉǈǎ].
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Ǌ.ǋ CŃłŉŇŃŀ ŉļĹŃŇŏ

Control theory is a ėeld in mathematics and engineering that studies dynamical systems whose
behavior can be inĚuenced externally. Examples of control theory applications range from simple
temperature control systems (e.g. air conditioning) to complex safety critical digital controllers
like the autopilot of an aircraě. If the controller monitors one or several outputs of the systemwe
call it a closed-loop controller (feedback control), if not its called an open loop controller (non-
feedback control). A schematic representation of open- and closed-loop controllers is shown in
Figure ǋ in Section ǉ.ǉ.Ǎ. Control theory is a ėeld that focused on developing the mathematical
theory of control systems. In the following I will brieĚy present the basic concepts of this vast
ėeld.

Ǌ.ǋ.ǉ DŏłĵŁĽķĵŀ ňŏňŉĹŁň

Control theory is concerned with the behavior of dynamical systems. A dynamical system is a
system whose internal state is changing in time. Consider for example the growth of a bacterial
population. We can deėne the number of cells at a certain time point t as the variable xt. All values
that xt can aĨain are integral and deėne the state space, in this case xt ∈ N+. If the state space
is discrete we speak of a discrete dynamical system, if its continuous of a continuous dynamical
system. ĉedynamicsof the systemare said tobedeterministic if there exists a unique solution for
the temporal evolution of the system. Otherwise the system is non-deterministic. Imagine now
that each cell will duplicate at each time step and that cells never die. In this case the temporal
evolution of the dynamical system can be wriĨen as

xt =Ʀxt− (Ǌ.ǉ)

with the initial condition x ∈ N. ĉe solution of this initial value problem is

xt = Ʀtx (Ǌ.Ǌ)

In this case we are dealing with a discrete-time system, but we can also deėne a dynamical sys-
tem for continuous-time. For example if we approximate the number of cells with a continuous
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variable y ∈ R+ we could model the bacterial growth with the following differential equation

ẏ(t) =
dy(t)
dt

= μy(t) (Ǌ.ǋ)

with growth rate μ ∈ R+ and initial condition y(Ƥ) = y . ĉe solution in the continuous case is

y(t) = eμty (Ǌ.ǌ)

Dynamical systems theory plays an important role in biology to model different dynamical
processes like growing cell populations, signaling or metabolic pathways, genetic networks or
the spreading of a drug in a body. ĉese models can help to understand the dynamics of the
underlying processes andoěen lead to novel biological hypothesis [ǉǈǏ, ǉǈǐ]. In addition to such
predictive models, which provide generally an abstracted representation of themodeled process,
large scale descriptive models integrate biological knowledge [ǉǈǑ, ǉǉǈ]. While these models
usually did not include any dynamics but instead focused on the structure of biological systems,
there are efforts to combine these twomodeling approaches for examplebydevelopingwhole-cell
dynamical models [ǉǉǉ].

ĉe mathematical formalism of the models used in biology varies depending on the applica-
tion. To review the different formalisms would be beyond the scope of this work. ĉe models
I will use in this work are ordinary differential equation (ODE) models, ordinary meaning that
all derivatives are with respect to one variable, in this case time. ĉe assumptions that are being
made when using ODEmodels to describe biological phenomena are (i) that the described sys-
tem is well stirred and (ii) that themolecule numbers within the volumewhich is considered (e.g.
concentrations) are high enough to allow smooth local averaging.

Ǌ.ǋ.Ǌ FĹĹĸĶĵķĿ ķŃłŉŇŃŀ

Dynamical systems are of vital importance in control theory, because they allow to predict how
a system behaves. Model-based control systems incorporate a model of the controlled system,
which is used to ėnd optimal control inputs. Note that the optimality of the control inputs de-
pend on the speciėc use case, because different control applications have different requirements,
for example minimizing the energy consumption or the speed of convergence. Even for con-
trollers that do not rely on a model (model-independent control), a model is usually used in the
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development of the control system to tune the controller.
In the following Iwill describe the twocontrollerswhich Iwill use in thiswork, theproportional-

integral-derivative (PID) controller and the model predictive controller (MPC). An MPC uses
a model to predict the behavior of the controlled system, while a model is oěen used to tune the
parameters of a PID controller.

PID ķŃłŉŇŃŀ

ĉe most common feedback controller is a proportional-integral-derivative (PID) controller. It
works by calculating the difference between the observed and desired state of the system, which
is called error (e(t)). ĉe control u(t)which is applied at a certain time t is then just the weighted
sumof a termproportional to the error, a term integrating the error over time anda timederivative
of the error.

u(t) = kP · e(t) + kI ·
∫ t

e(τ)dτ + kD · d
dt
e(t) (Ǌ.Ǎ)

ĉe factors kp, kI and kD are the weights for the three different terms. ĉe proportional term kP
quantiėes the direct inĚuence that the error has on the control, while the integral term kI can be
thought of as the “memory” of the controller, because it quantiėes the effect of past errors on
the control. High values for the derivative term kD result in a fast responding controller and the
derivative term can be thought of as a prediction of how the system will react in the near future.
For noisy systems, the derivative term is oěen neglected (kD = Ƥ), which yields a proportional-
integral (PI) controller. A PID controller does not require any structural model about the con-
trolled system and is widely used in practice due to its simple form. In order to construct an effec-
tive controller that converges fast to the target value, without showing large oscillations around
the target, the weight factors have to be chosen carefully.

MŃĸĹŀ ńŇĹĸĽķŉĽŋĹ ķŃłŉŇŃŀ

Amodel predictive controller (MPC)makes use of a model of the controlled system to simulate
the response of the system to various control inputs. MPC relies on a cost functionwhich deėnes
the optimal control strategy and that is based on the difference between a desired output proėle
of the controlled system and the prediction of the model for a certain input. ĉis cost function
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can in addition include other measures, for example a term ensuring that the control is achieved
with a minimal consumption of energy. Aěer each observation the current state of the system
is estimated (see Section Ǌ.ǋ.ǋ). Starting from this estimated state, an optimal control strategy
is identiėed by minimizing the cost function over a (short) time horizon. ĉis strategy is then
applied for a short while, before a new observation is made and the process is repeated. MPC
works with almost any kind of model and it allows to easily integrate complex constraints on the
control values.

Ǌ.ǋ.ǋ SŉĵŉĹ ĹňŉĽŁĵŉĽŃł

To simulate the behavior of the controlled system, the MPC requires knowledge of the current
state of the model used to describe the system. In most cases only a limited number of the vari-
ables of the model can be observed, but to predict the future evolution of the system, knowledge
of all model variables is required. To estimate the states of the unobserved (hidden) variables, we
can exploit the inĚuences that the hidden variables have on the observed ones. ĉe problem re-
constructing the full state of a model based on a series of observations of a part of the state space
is called state estimation problem. ĉis state reconstruction is not possible for all systems (for
details see [ǉǉǊ]).

KĵŀŁĵł ĺĽŀŉĹŇ

A Kalman ėlter is a process to estimate the state of a linear dynamical system based on a series
of (noisy) measurements of a subset of the variables of the system [ǉǉǋ]. It works in a two step
process: In a ėrst prediction step the current state of the system and its uncertainty is estimated
using the model of the system. Next, in the update step, the estimated state is updated based on
observations and a weighted average between the computed and observed state is chosen.

ĉe Kalman ėlter assumes a time-discrete model of the form

xk = Axk− + Buk + wk (Ǌ.ǎ)

where uk denotes the control which is applied at time-step k, wk ∼ N(Ƥ,Q) is the process noise
which is assumed to be Gaussian with zeromean and covarianceQ andA and B are matrices. We
are not able to observe the full state of x and the observations we can make are noisy wherefore
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each measurement zk has the following form

zk = Hxk + vk (Ǌ.Ǐ)

where the matrixH describes the observation model, which maps the state of the system to the
observed state and vk ∼ N(Ƥ,R) is the measurement noise of the systemwhich is again assumed
tobeGaussianwith zeromean. Wedeėnenow x̂k|l andPk|l as the estimated state of the systemand
the covariance of this state estimate at time k using observations up to time l. In the prediction
step, the Kalman ėlter estimates the state and its covariance based on the model description.

x̂k|k− = Ax̂k− |k− + Buk (Ǌ.ǐ)

Pk|k− = APk− |k− AT + Q (Ǌ.Ǒ)

In this form the ėlter just simulates the model, without taking observations into account. Obser-
vations are integrated in the update step:

x̂k|k = x̂k|k− + Kk(zk − Hx̂k|k− ) (Ǌ.ǉǈ)

Pk|k = Pk|k− − KkHPk|k− (Ǌ.ǉǉ)

with Kalman gainK, which describes the weight that is given to the observation and is deėned as

K = Pk|k− HT(HPk|k− HT + R)− (Ǌ.ǉǊ)

ĉeKalman ėlter has been developed for linear systems, but an extension to nonlinear systems
is possible by linearizing the nonlinear model around its operating points [ǉǉǋ]. In practice, in
the nonlinear case equation Ǌ.ǎ is replaced by

xk = f(xk− , uk− ) + wk− (Ǌ.ǉǋ)

and the transition matrix A is approximated by the Jacobian of f

Fk− =
∂f
∂x

∣∣∣∣
x̂k− |k− ,uk−

(Ǌ.ǉǌ)
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Ǌ.ǌ. COVARIANCEMATRIX ADAPTATION EVOLUTIONARY STĆTEGY

Ǌ.ǌ CŃŋĵŇĽĵłķĹ ŁĵŉŇĽŎ ĵĸĵńŉĵŉĽŃł ĹŋŃŀŊŉĽŃłĵŇŏ ňŉŇĵŉĹĻŏ

An optimization problem is the problem of ėnding an input which minimizes (or equivalently
maximizes) a certain function. In addition the value of the input parameters oěen cannot be
chosen freely, such that only certain inputs are allowed (constrained optimization problem). ĉe
algorithms used to solve optimization problems can be grouped into local and global optimiza-
tion methods. A local optimum of a cost function is a point for which the evaluation of the cost
function is lower (or higher for amaximization problem) than for all surrounding points. Inmany
non-linear optimization problems, the cost function has many local optima but one is usually in-
terested in ėnding the global optimum, that is the best of all local optima. Local optimization
methods oěen rely on local properties of the cost function, for example on its gradient. In con-
trast to local optimization methods, global search methods aim at ėnding the global optimum of
an objective function. ĉe covariance matrix adaptation evolutionary strategy (CMAES) [ǉǉǌ]
is an evolutionary global optimization algorithm. Search methods that generate search points in
a stochastic manner, among them are evolutionary strategies, are well suited to solve global op-
timization problems, because in contrast to deterministic search methods they allow the search
path to step out of local minima. Evolutionary optimization algorithms apply ideas originating
from the natural selection theory in biology to optimization problems. In generalmost evolution-
ary strategies work with a random population of solutions, fromwhich the best ones are selected
and recombined to a new generation of solutions. ĉe evaluation of the solutions is based on the
rank of their corresponding ėtness value rather than on the absolute value.

In CMAES candidate solutions are sampled according to a multivariate normal distribution

xi ∼ m+ σNi(Ƥ,C) (Ǌ.ǉǍ)

where m denotes the mean of the population, σ the step length and C the covariance matrix de-
scribing the shape of the search problem. Mean and covariance are selected here following amax-
imum likelihood principle. ĉemeanm is selected such that the likelihood of previously success-
ful candidate solutions ismaximized. Also the covariancematrix is selected in such amanner that
the likelihood of previous selected steps that were successful is increased.
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3
Materials andMethods

In the previous chapter, I have explained the background of thework presented here, by introduc-
ing the biological system I control and by giving a broad overview about control methods. In this
chapter I will focus on the speciėc methods I have used to develop the control platform. ĉese
includemethods for cell tracking and automated quantiėcation of Ěuorescentmeasurements that
I have implemented in MATLAB. In addition I describe the microĚuidic devices I have used in
this work.

ǋ.ǉ IŁĵĻĹ ĵłĵŀŏňĽň ĵłĸ ķĹŀŀ ŉŇĵķĿĽłĻ

Afeedbackcontroller using amicroscopeas a sensor requires the automatic analysis ofmicroscopy
images and this analysis needs to be fast and robust to meet the real-time requirements. For the
control of single cells we also need to be able to identify single cells in an image and to track them
over time.

ǌǉ
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ǋ.ǉ.ǉ DĹŉĹķŉĽŃł Ńĺ ŏĹĵňŉ ķĹŀŀň Ľł ĽŁĵĻĹň

ĉe quantiėcation of Ěuorescentmarkers requires knowledge of the position and size of each cell
in the image. It is possible to automatically detect cells within an image with different methods
[ǉǉǍ]. ĉe difficulty of this detection is oěen to separate adjacent cells from each other without
over-segmenting the image. Yeast cells have a well deėned quasi rund shape, a feature that can be
exploited to detect them in an image.

HŃŊĻļ ŉŇĵłňĺŃŇŁ

ĉeHough transform [ǉǉǎ] is a method to detect parametrizable objects such as lines or circles
in images. ĉe parameter space is here discretized by an accumulator array. Each entry of the
accumulator array represents a small region in parameter space and is initializedwith a zero value.
For example a line in an image can be described by its angle and its distance from a point of origin.
In this case the accumulator array would be Ǌ-dimensional and each entry in the array would
correspond to a certain line in the image.

ĉe algorithm then ėrst detects edges in the image, for example by thresholding a gradient of
the image. For each pixel in the image that belongs to an edge, the corresponding values in the
accumulator array are then incremented. For example for line detection all values in the accumu-
lator array that represent a line going through that point are incremented. It is important that all
pixels which belong to the same object (e.g. which are colinear in the example of line detection)
share a cell in the accumulator array. ĉis has to be ensured by a careful choice of the parametriza-
tion of the object to be detected. Instances of the detected objects are then identiėed by ėnding
localmaxima in the accumulator array. An example of aHough transform is depicted in Figure ǉǊ.
ĉis example explains the Hough transform for line detection, but the Hough transform can eas-
ily extended to detect circles [ǉǉǏ]. In this case we are dealing with a ǋ-dimensional accumulator
array (radius, x-position and y-position).

OŉļĹŇ ķĹŀŀ ĸĹŉĹķŉĽŃł ŁĹŉļŃĸň

ĉeHough transform is not the only algorithmsuitable for segmenting images of cells, but I chose
it in this context because it works very well on images of yeast cells by exploiting the feature of
their round shape [ǉǉǐ]. Othermethods for segmenting images are for example thresholding the
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Figure ǉǊ: Example of a Hough transform to detect lines. (A) A line within an image can be
parametrized by the displacement ρ between the line and the point of origin and the angle Θ
between a vector orthogonal to the line and the x-axis. (B) Accumulator array in which each
entry corresponds to a line in the image. ĉe values in this array indicate how oěen an edge was
identiėed in the image which lies on the line corresponding to the position in the accumulator
array. ĉe pink square denotes the maximum of the accumulator array, so the position of this
maximum in the array gives the parameters of the detected line in (A).

image to detect objects that are brighter than the background and the subsequent identiėcation
of connected objects in the threshold image. ĉis approach does not work well if the cells occur
in clusters, because the thresholding method cannot distinguish the single cells in a cluster. An-
other very common method is the watershed algorithm, which regards an intensity image as a
landscape and segments the image based on the height of the landscape by continuously Ěowing
water outgoing from local minima. A problem of the watershed method is that it oěen leads to
oversegmentation of an image, which requires additional treatment of either the segmentation
result or of the original image. A comparison of the watershed method to the Hough transform
is shown in Figure ǉǋ. Oěen the thresholding method is combined with the watershed method,
by converting the binary threshold image to a landscape by applying a distance transform [ǉǉǑ].
A review about different methods to segment images of cells can be found in [ǉǉǍ].
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A B C

Figure ǉǋ: Comparison of watershed and Hough transform to detect yeast cells. (A) Bright ėeld
image of S. cerevisiae cells. (B)ĉe watershed transform to detect cell boundaries oěen leads to
over-segmentation. (C) A circular Hough transform approximates the cellular boundaries with
circles.

ǋ.ǉ.Ǌ CĹŀŀŉŇĵķĿĽłĻ

Once the positions of the cells at different time points are known, the cells in the different images
have to be matched. ĉis means that each cell in an image at a certain time-point has to be iden-
tiėed with a cell from the previous image. ĉis is not a trivial problem since the number of cells
in two consecutive images is not necessarily the same. Cells can disappear because they move
out of the ėeld of view, or cells can appear by moving in the ėeld of view or by cell-division. ĉe
problem can be solved by computing the distances between all cells in one image and all cells in
the consecutive image. ĉen each cell from the later image has to be identiėed with a cell from
the previous image, minimizing the sum of the corresponding distances (see Figure ǉǌ).

PŇŃĶŀĹŁ ĺŃŇŁŊŀĵŉĽŃł

ĉeproblemof identifying the same cells in two consecutive images with the help of a cell-to-cell
distance matrix can be formulated as a binary integer linear programming (BIP) problem. A BIP
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Figure ǉǌ: Celltracking problem. A. Illustration of two consecutive images of three cells. ĉe
order in which the cells are detected may change, which is indicated by a change in numbering.
B. Pairwise distances of the cells in the consecutive images. C.Distancematrix corresponding to
the distances in (B). Minimal distances are denoted in red.

problem can be expressed in the following form:

min
x

cTx (ǋ.ǉ)

such that

Ax ≤ b

Aeqx = beq

x ∈ {Ƥ, ƥ}n

with the cost vector c ∈ R+n, the inequality constraint matrix A ∈ Rm×n and the equality con-
straint matrix Aeq ∈ Rk×n. If we ėll the cost vector c with the entries of the cell-to-cell distance
matrix we can interpret the solution vector x as a mapping in which pairs of cells have been iden-
tiėed as identical. ĉe vector x has one entry for each pair of cells, a ǉ in x meaning that the
corresponding cell-to-cell distance is minimal, so the two cells are assumed to be identical. ĉe
inequality constraint matrix A and the vector b can be chosen in a way that each cell from the
current image is only assigned to one cell from the previous image and the other way round (see
Figure ǉǍ). ĉe equality constraint ensures that the maximal number of cells is mapped. ĉe ad-
vantage of formulating this problem as a BIP problem is that for such problems efficient solving
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algorithms like the simplex algorithm [ǉǊǈ] have been developed¹.

A

D =

Ƭ Ʀ ƭ
ƥ ƫ ƫ
ƪ ƪ ƥ

 ⇒ cT =
(
Ƭ Ʀ ƭ ƥ ƫ ƫ ƪ ƪ ƥ

)
B

A =


ƥ ƥ ƥ Ƥ Ƥ Ƥ Ƥ Ƥ Ƥ
Ƥ Ƥ Ƥ ƥ ƥ ƥ Ƥ Ƥ Ƥ
Ƥ Ƥ Ƥ Ƥ Ƥ Ƥ ƥ ƥ ƥ
ƥ Ƥ Ƥ ƥ Ƥ Ƥ ƥ Ƥ Ƥ
Ƥ ƥ Ƥ Ƥ ƥ Ƥ Ƥ ƥ Ƥ
Ƥ Ƥ ƥ Ƥ Ƥ ƥ Ƥ Ƥ ƥ

 b =~ƥ

C
Aeq =~ƥ beq = min(#old cells,#new cells)

D
xT =

(
Ƥ ƥ Ƥ ƥ Ƥ Ƥ Ƥ Ƥ ƥ

)
Figure ǉǍ: Example of linear constraint mapping. A.ĉe weight vector c is constructed by ap-
pending the rows of the distancematrixD. B.ĉe inequality constraintmatrixA and the vector b
ensure that only one entry per columnand rowof the distancematrix are selected. C.ĉenumber
of ones in x has to be equal to the number of cells that can bemapped. D.Vector x corresponding
to the optimal solution of this example.

ǋ.ǉ.ǋ QŊĵłŉĽĺĽķĵŉĽŃł Ńĺ HŃĻǉ łŊķŀĹĵŇ ĹłŇĽķļŁĹłŉ

ĉe activation of the HOG pathway leads to the import of the Hogǉ protein into the nucleus
where it inĚuences the expression of various genes (see Section Ǌ.ǉ.ǋ). It has been shown that
the nuclear localization of Hogǉ correlates with its activation (i.e. phosphorylation), wherefore
we canmeasure the activation state of theHOGpathway bymeasuring the nuclear localization of
Hogǉ [ǋǏ]. In thiswork Iwill use strains inwhich theHogǉproteinhasbeen fused to aĚuorescent
protein, so its localization can be observed. Depending onwhether in addition a Ěuorescent label
for the nucleus is available, different image analysis techniques are worth considering.

¹ĉe tracking soěware I developed can either use the native matlab function bintprog() to solve the BIP
problem, or alternatively the open source soěware lp_solve (hĨp://lpsolve.sourceforge.net) which shows a sig-
niėcant performance increase over the native matlab implementation.
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CŃŀŃķĵŀĽŐĵŉĽŃłŌĽŉļ łŊķŀĹĵŇ ŁĵŇĿĹŇ

If both Hogǉ and a nuclear marker carry a distinct Ěuorescent label, we can deėne the activation
state of theHOGpathwayby the colocalizationofHogǉ and thenuclearmarker [ǋǏ]. ĉe relative
Hogǉ nuclear colocalization can be deėned as the ratio of the mean pixel intensity of the Hogǉ
marker inside the nucleus and in the cytoplasm.

h(t) =
〈Pixel intensity〉nuc
〈Pixel intensity〉cyt

(ǋ.Ǌ)

ĉe area of the nucleus is here detected by thresholding the Ěuorescent image of the nuclear
marker. ĉe cellular area can be detected either with the Hough transform described in Section
ǋ.ǉ.ǉ, or by thresholding a cytoplasmic Ěuorescentmarker. Away to normalize the colocalization
is to divide it by the colocalization value measured in the non-activated state.

CŃłŉŇĵňŉ Ńĺ ŉļĹ ķĹŀŀ-ĽŁĵĻĹ

In case a nuclearmarker is not available, the activation state of theHOGcascade canbe quantiėed
by the contrast of theHogǉmarker inside the cell. In practice I deėned this contrast as the differ-
ence between the maximal and the minimal Ěuorescent intensity inside the cell. To smooth this
measurement, the maximal and minimal intensities are computed by averaging the ǉǍ brightest
and ǉǍ dimmest pixels respectively. In order to prevent pixels that do not belong to the cellular
area are taken into account, only pixels whose distance to the center of the cell is less than ǎǈƻ of
the cell radius are taken into account. A comparison of the colocalization and contrast methods
in quantifying Hogǉ localization data (see Figure ǉǎ) shows that the two methods yield largely
similar results.

ǋ.ǉ.ǌ QŊĵłŉĽĺĽķĵŉĽŃłŃĺĻĹłĹĹŎńŇĹňňĽŃłŊňĽłĻĵķŏŉŃńŀĵňŁĽķ ĺŀŊŃŇĹňķĹłŉŁĵŇĿĹŇ

In this work I use a cell-line in which the STLȕ gene has been replaced by the Ěuorescent marker
yECitrine. ĉequantiėcation of this cytoplasmic osmo-stress responsivemarker is done byquan-
tifying the mean pixel intensity inside each cell and subsequent subtraction of the Ěuorescent
background level. Aěerdetectionof the cellular boundaries using theHough transform this quan-
tiėcation is straightforward. One problem is that the cell-size of the cells changes in response to
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Figure ǉǎ: Comparison of colocalization and contrast to quantifyHogǉ nuclear localization. Nu-
clear localization ofHogǉ in response to a ǎminute long osmotic shock starting at time ǉminute,
quantiėed either by colocalization (A) or by contrast (B).

an osmotic shock. Since the amount of Ěuorescent proteins does not change at the same time,
this means that the detected Ěuorescent intensity increases with the shrinking cell-size. In this
work I neglect this phenomenon, because the intensity changes caused by cell-size changes re-
main modest.

ǋ.Ǌ MĽķŇŃĺŀŊĽĸĽķň

MicroĚuidic devices are small devices made out of glass or synthetic polymers that allow thema-
nipulation of small (nanoliter scale) volumes. ĉeir low production cost and small reagent con-
sumption due to their small size led tomany successful applications in biology in the recent years.
On the one hand there are biotechnological applications like Ěuorescence activated cell sorting
(FACS) [ǉǊǉ], nano-volume polymerase chain reaction (PCR) [ǉǊǊ] or oligonucleotide synthe-
sis [ǉǊǋ]. On theother handmicroĚuidic devices led to a great advancement in the observationof
cells while being able to precisely manipulate their environment, especially in combination with
Ěuorescent imaging techniques. ĉey allow to observe single cells for many generations while
the external conditions can be altered within minutes or even seconds. ĉis permiĨed to beĨer
understand signaling dynamics of cells by stimulating pathways in a precise, well deėnedmanner
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[ǋǏ, ǋǐ, ǉǊǌ]. ĉe possibility to generate for example oscillatory inputs provides a completely
novel way to discover the functioning of genetic networks [ǋǎ, ǉǊǍ]. In addition microĚuidic
devices can be used as a microchemostat, meaning that environmental conditions can be kept
constant over a long period, because possiblemetabolic products released by the cells are washed
away.

To constructmicroĚuidic devices, the same techniques used for the construction of integrated
circuits on a silicon wafer are used. In a ėrst step a master is created using photolithography.
ĉe process of photolithography is the transfer of a motif from an optical mask to a photoresist
which covers the surface of a wafer. A photoresist is a chemical for which the solubility in a cer-
tain solution (developer) depends on whether the photoresist has been exposed to light or not.
Simply speaking, a positive photoresist becomes soluble in response to light, a negative photore-
sist becomes insoluble in response to light. To transfer the motif from the optical mask to the
photoresist, the two are placed in contact and exposed to intense light. Either the non-exposed
part (negative photoresist), or the exposed part (positive photoresist) can then be washed away
by the developer.

To control the thickness of the photoresist, which later deėnes the height of the microĚuidic
chamber, a certain amount of photoresist is applied to the wafer, which is then spun at a certain
speed for a deėned time in a spin-coater. Another control of the thickness is the viscosity of the
photoresist. Before and aěer the exposure, the wafer has to be heated to a certain temperature for
a speciėc time. In a last step the surface of the paĨern is treated with trimethylchlorosilane in a
process called silanization to facilitate the release of the PDMSmold from the surface [ǉǊǎ]. ĉe
whole process takes about Ǌǈ to ǎǈ minutes depending on the thickness of the photoresist.

ĉe master can aěer that be used almost indeėnitely to create microĚuidic chips by providing
amold in which a synthetic polymer, oěen polydimethylsiloxane (PDMS), can be solidiėed (see
Figure ǉǏ).

In this work I used two different microĚuidic devices, one which allows fast switching (within
seconds) but is not well suited for long time experiments and another one with can be used for
very long experiments but has slower switching dynamics.
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Figure ǉǏ: Microfabrication process. (A)A siliconewafer is coveredwith a photoresist. A regular
thickness is achieved by rotating the wafer. ĉe thickness of the photoresist layer is determined
by its viscosity and by the rotational speed. (B) A paĨern is transferred from a mask to the pho-
toresist by UV light. Aěer that the non-exposed part (negative photoresist) can be removed by
a developing solution. (C) ĉe paĨern on the wafer can be used to construct microĚuidic de-
vices consisting of PDMS.ĉerefore Ěuid PDMS is applied to the master, polymerized and sub-
sequently peeled of. Aěer that the PDMS can be aĨached to a coverslip. (Modiėed illustration.
Original by Agnès Miermont)

ǋ.Ǌ.ǉ MĽķŇŃĺŀŊĽĸĽķ ķļĽń ŉŃ ĽłŋĹňŉĽĻĵŉĹ ňĽĻłĵŀĽłĻ ĸŏłĵŁĽķň Ľł ŏĹĵňŉ

To investigate and control the signaling dynamics of the HOG cascade, I used a microĚuidic de-
vice in which the media of yeast cells can be altered within less than a second. ĉis device has
already proven its usefulness in probing dynamical aspects of the HOG pathway [ǋǏ]. ĉe de-
vice has a simple Y-shaped structure and the cells can be ėxed to the glass slide of the device with
the sugar binding protein concanavalin A which also binds to glass as well as to carbohydrates on
the cellular membrane. ĉe device has two inlets (top of the Y, see Figure ǉǐ for a schematic rep-
resentation of the device) and one outlet and the media is Ěown through the device by applying
a pressure to the input reservoirs with a microĚuidic pressure controller (MFCS, Fluigent, Paris
(France)). To change the input Ěuid that is felt by the cells, the fact that the Ěow in a microĚu-

Ǎǈ



ǋ.Ǌ. MICROFLUIDICS

idic device is laminar is exploited. At larger scales, Ěuids exhibit a turbulent Ěow which shows a
chaotic behavior and in which (fast) mixing occurs predominantly through convection. At the
micro-scale, a Ěuid shows a completely different behavior in which the Ěow is laminar and (slow)
mixing occurs only through diffusion. In the case of the microĚuidic device presented here this
means that the two Ěuids entering the device do onlymix by diffusion and show a clear separation
if the Ěow rate is high enough. ĉe position of the line of separation can be altered by changing
the pressure difference between the two input Ěuids, which makes it possible to rapidly (within
less than a second) change the Ěuid which is Ěowing over cells close to the center of the device.
A limitation of the Y-shaped device is that cells tend to loose their concanavalin A bonding to
the glass slide aěer about Ǌ hours, which prevents the use of this device in long time experiments
which are necessary if one wants to investigate gene expression.

Input flow 

controller

Trash

collector

A B

Figure ǉǐ: Y-shaped microĚuidic device. (A) Schematic representation of the device. ĉe Ěow
is driven by the input Ěow controller which regulates the pressures of the two input Ěuids. Cells
are ėxed to the glass slide by the lectin concanavalin A, so they are not washed away by the Ěow.
(B) ĉe separating line between the two input Ěuids can be altered by changing the pressure
difference of between the two input Ěuids. ĉis allows to exchange the media Ěowing over the
cells within less than a second.

ǋ.Ǌ.Ǌ MĽķŇŃĺŀŊĽĸĽķ ķļĽń ĺŃŇ ŀŃłĻ ŉĹŇŁ ŃĶňĹŇŋĵŉĽŃł Ľł ŏĹĵňŉ

Changes in gene expression occur on amuch longer time scale than changes in the signaling activ-
ity of a cell, which means that the Y shaped device is not well suited for the investigation of gene
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expression. Hence, I used a different device for the control of gene expression, which allows long
time observation of yeast cells and has an H-shaped form (see Figure ǉǑ). For the fabrication of
the device I used an original design by Gilles Charvin. In this device the Ěow is driven by a peri-
staltic pump through two Ěow channels which have a height of ǉǈǈ μm. Imaging chambers with a
height of ǋ.ǉ μm are placed in between these Ěow channels. Since the diameter of a haploid yeast
cell is approximately ǋ-ǎ μm², cells in this chamber are sandwiched in between the glass slide and
the elastic PDMS layer. In this constrained environment, cellular movement is limited, which
facilitates cell-tracking and allows long time observation of the cells. Cells can be loaded in this
device by applying a short small pressure, which liěs up the elastic PDMS layer, allowing the cells
to enter the imaging chamber.

ĉe Ěuid entering the device is selected by a two-way valve (LFA series, ĉe Lee Company,
Westbrook CT, USA) upstream of the device and media exchange from the Ěowing channel to
the imaging chamber occurs by diffusion. Since the Ěuid takes some time to travel from the valve
to the device, a switch of the valve does not lead to an instantaneous change of the media felt
by the cells. In addition Ěuids mix in the tubes by both convection and diffusion and the media
exchange in the imaging chamber happens by diffusion. Overall this means that a step change at
the valve level will lead to a delayed and gradual change at the cell level (see Figure ǉǑB). On the
other hand the device is well suited for long time experiments, because cells growing out of the
imaging chamber are just washed away by the Ěow.

ǋ.Ǌ.ǋ MĵłŊĺĵķŉŊŇĽłĻ ńŇŃķĹňň

ĉemasterwafers for the twomicroĚuidic deviceswere constructedwith the standard soě lithog-
raphy techniques described above. ĉe microĚuidic chips were constructed by casting PDMS
(Sylgard ǉǐǌ, Dow Corning, Midland MI, USA) on the master wafer and subsequently curing it
at ǎǍ ◦C overnight. Aěer that the chip was cut out and bonded to a glass cover slip by plasma
activation.

²hĨp://hĨp://bionumbers.hms.harvard.edu
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Figure ǉǑ: H-shaped microĚuidic device. (A) Schematic representation of the device. ĉe Ěow
is created by a peristaltic pump placed downstream. It is possible to select between two different
input Ěuids by switching a valve placed upstream. (B)Measurement of the switching characteris-
tics using ink. A switch of the valve (red) does not lead to an immediate change at themicroĚuidic
device level (blue curve), because of the dead volume in the connection tubes andbecause ofmix-
ing within the tubes (C)Close up of the microĚuidic device. (D)Cells are trapped within a thin
layer in between the cover slip and the PDMS.ĉe media in this imaging chamber is exchanged
by diffusion.
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CHAPTER ǋ. MATERIALS ANDMETHODS

ǋ.ǋ YĹĵňŉ ňŉŇĵĽłň

For the control of the HOG signaling cascade I used a strain in which Hogǉ is labeled with GFP
and the nuclear histone HtbǊ is labeled with mCherry (yPHǉǍ). ĉe strain for the gene expres-
sion control experiments using the HOG cascade (yPHǑǉ) has the coding sequence of STLȕ re-
placed by yECitrine and in addition Hogǉ tagged by mCherry. I constructed this strain with the
help ofĉierry Delaveau based on a strain provided by MeganMcClean. ĉe strain used for the
gene expression control using the METǋ system (yPHǉǉǋ) carries a Venus Ěuorescent protein
with a degradation tag controlled by theMETǋ promoter. In addition the strain has the budneck
markerMYOȕ labeled with mCherry. All strains used here are listed in Table ǋ.ǉ.

Strain Genotype Background Reference
yPHǉǍ HOGǉ::GFP-HISǋ HTBǊ::mCherry-UĆǋMATa SǊǐǐC [ǉǊǏ] [ǋǑ]
yPHǑǉ pSTLǉ::yECitrine-HISǍ Hogǉ::mCherry-hphMATα SǊǐǐC [ǉǊǏ] [ǌǊ] ³
yPHǉǉǋ pMETǋ::Venus-deg-ADEǊMYOǉ::mCherry-HISǍMATa Wǋǈǋ [ǉǊǐ] ⁴

Table ǋ.ǉ: List of yeast strains.

³ĉis strain is based on a strain that was kindly provided byMeganMcClean.
⁴ĉis strain was kindly provided by Gilles Charvin.
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4
Towards controlling gene expression:

computational investigations and control of signal
transduction

ǌ.ǉ CŃłŉŇŃŀ Ńĺ ŉļĹHŃĻǉ ňĽĻłĵŀĽłĻ ķĵňķĵĸĹ

Myėrst step in developing a closed loop control platform for gene expression was the implemen-
tation of a feedback controller for the HOG pathway activity. At the time when I started this
project such an in vivo control of a signaling pathway had not been demonstrated and showing
that controlling the HOG cascade is feasible would be a ėrst step in utilizing feedback control
approaches to apply precise perturbations to dynamical biological systems. I will use the HOG
pathway to drive gene expression and at the time of development of theHOGpathway controller
I assumed that being able to control HOG signaling activity was a necessary step for the devel-
opment of an effective gene expression controller. In addition, the HOG cascade shows a signiė-
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CHAPTER ǌ. TOWARDS CONTROLLINGGENE EXPRESSION

cantly faster response time than the downstreamgene expression process, which reduces the time
for tuning and testing the control platform. Many methods which I applied to control the HOG
pathway activity are similar to the methods required to control gene expression, so developing a
controller for the signaling process helped to guide the development of the gene expression con-
troller.

ĉe ideawas to investigate which activation proėles ofHogǉ are achievable using a closed loop
controller, in order to then tailor an approach to control gene expressionwhich takes into account
the constraints identiėed during the development of this ėrst controller. In particular I was in-
terested in the effectiveness of different approaches to encode gene expression proėles by modu-
lating the HOG pathway activity. One option to encode gene expression would be to work with
a constantly active HOG cascade and to vary its activation level in order to reach a desired gene
expression behavior (amplitude modulation). Another option would be to repeatedly activate
the pathway for short durations and to vary the frequency of these activations (frequency mod-
ulation). In the following I will test both approaches, to investigate which one is suited best for a
control of gene expression.

ǌ.ǉ.ǉ SĹŉŊń

ĉe platform to control Hogǉ signaling activity consists of a microĚuidic device to activate the
HOG pathway, a Ěuorescent microscope to observe Hogǉ localization, and of a computer im-
plementing image analysis and the controller. I used the Y-shaped microĚuidic device presented
in Section ǋ.Ǌ.ǉ, which is able to switch between two different cellular media within less than a
second, but cannot generate a mixture of the two inputs (input is digital). But we can exploit
a feature of the HOG pathway to emulate continuous input. ĉe HOG pathway is not able to
faithfully follow a fast signal but instead acts as a low pass ėlter (cutoff frequency ǌ.ǎ x ǉǈ− Hz
(approx. once every ǊǊǈ seconds) [ǋǏ]) and integrates the signal. We can use this feature to
emulate a continuous input by switching between normal and sorbitol-enriched (ǉM) medium
faster than the cutoff frequency of theHOG cascade. In practice I used a pulse widthmodulation
with a time window of ǉǈ seconds, which would for example encode a ǈ.ǊM sorbitol intensity by
Ěowing cells Ǌ seconds with ǉM sorbitol media and ǐ seconds with normal media.

ĉeyeast strain I used for this control hasHogǉ fused toGFPand and the nuclear proteinHtbǊ
fused tomCHerry (strain yPHǉǍ fromTable ǋ.ǉ), so the activation state of theHOGcascade can
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ǌ.ǉ. CONTROLOF THEHOGǉ SIGNALINGCASCADE

be quantiėed via the nuclear colocalization of Hogǉ (see Section ǋ.ǉ.ǋ). To identify cellular re-
gions I used a thresholded image ofHogǉ::GFP,while a thresholded image of theHtbǊ::mCherry
channel was used to identify nuclear regions. In this work I did not identify single cells, but in-
stead controlled the signaling activity of the few (ǉ-ǎ) cells in the ėeld of view, wherefore cells are
not tracked over time.

I used a PI controller (see Section Ǌ.ǋ.Ǌ) to control the HOG cascade, which due to its sim-
plicity is easy to implement and shows a good performance for most control applications. ĉe
derivative term of the PID controller was omiĨed due to the high measurement noise of the ob-
servation ofHogǉ activation, which otherwise would have a negative inĚuence on the robustness
of the controller. Because I am considering a tracking problem here, in which the target changes
over time, only the recent past errors are relevant for control. ĉerefore, I integrated the error
only in the interval [t − Δ, t], where Δ is ǉǈǈ seconds. ĉe controller was tuned manually using
a trial and error approach. I found a good trade-off between response time and stability of the
controller by seĨing the proportional term kP to Ǌ and the integral term kI to ǉ.Ǎ.

ǌ.ǉ.Ǌ RĹňŊŀŉň

To test the two control strategies discussed above (amplitude vs. frequency modulation of the
signal transduction output) I designed two control objectives. ĉe ėrst was to maintain the nu-
clear localization at a constant level, which was Ǌǈƻ higher than the nominal value in unstressed
cells (this value was chosen such that it poses a signiėcant increase of the colocalization, while
being lower than the value for the maximal activation of the pathway). ĉis control target simu-
lates an amplitude modulation, in which the HOG cascade is active for a prolonged period. ĉe
secondcontrol objectivewasdesigned to simulate a frequencymodulation control of gene expres-
sion by activating the HOG cascade successively for a short duration. In practice I used trapeze
like motifs, which resemble the natural response of the HOG cascade to a pulse of osmolarity.
ĉe amplitude of the trapeze was again Ǌǈƻ higher than the nominal value and the increase and
decrease times were Ǌ minutes respectively, while the plateau duration lasted ǋ minutes.

ĉe results of these two control experiments in Figure Ǌǈ clearly show that the control is ef-
fective. For example if we consider the step experiment at time Ǌ minutes, the controller ėrst
applies the maximal osmotic input which results in an increase of the Hogǉ nuclear localization
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Figure Ǌǈ: Experimental results for the control of Hogǉ nuclear localization. (A)Controlling the
Hogǉ localization to a constant value Ǌǈƻ higher than the normal value does only work for short
timesdue the feedbackmechanisms activatedbyHogǉ. (B)Whenactivating theHOGcascade in
a repeated manner, with relaxation periods in between the activations, successive trapeze signals
can be achieved.

aěer a time delay of about ǉ-Ǌ minutes. ĉe system overshoots slightly, so the input is reduced
by the controller. Aěer that follow oscillations just below the target value for about ǉǈ minutes.
Aěer these ǉǈminutes the controller applies themaximal stress, while the activation of theHOG
pathway slowly falls back to its initial value. ĉis behavior can be explained by the feedbackmech-
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ǌ.Ǌ. COMPUTATIONAL INVESTIGATIONS

anisms of the HOG cascade (see Section Ǌ.ǉ.ǋ). Prolonged activation of Hogǉ leads to the pro-
duction of glycerol, so the cells adapt to the osmotic stress and the HOG cascade is inactivated
and the cells become insensitive to high osmolarity. It has been shown that prolonged activation
of the HOG cascade is possible by a ramp input [ǎǑ], but since the maximal stress that can be
applied is bounded this is not an option. ĉis also means that the amplitude modulation based
control strategy is not feasible. In addition the activation state of the HOG cascade is almost al-
ways lower than the target value. ĉis can also be explained by the osmo-adaptation of the cells,
which renders the osmo-stress less and less effective with time.

In contrast the controller succeeds in reproducing the trapeze like motifs, which encode a fre-
quency modulated Hogǉ signal. Here the ǎ minute relaxation time between two pulses seems to
be enough time to reset the pathway. ĉis might be because under iso- and hypo-osmotic con-
ditions the glycerol channel Fpsǉ opens, so the produced glycerol can leak out of the cell. Again
there is a ǉ-Ǌ minute time delay of the Hogǉ response, which could be easily circumvented by
shiěing the target function back in time. Taken together these results indicate that the frequency
encoding strategy ismore suited to our problemof controlling gene expression than an amplitude
modulation of Hogǉ activity.

ǌ.Ǌ CŃŁńŊŉĵŉĽŃłĵŀ ĽłŋĹňŉĽĻĵŉĽŃłň

Acontrol system requires rigorous testing and tuning before it will function properly, a procedure
that canbeboth time consuming andcostly. Inparticular testing control approaches for biological
systems can be very time consuming. For the gene expression control experiments one problem
was that, since gene expression changes take place over long time, each experiment lasted about
ǉǍ hours and that the “memory” of the cells eliminated the possibility of restarting an experiment
in case anything went wrong. ĉis rendered the development and debugging process of the real-
time controller quite slow-moving. In practice I was able to run at most one gene expression
control experiment in S. cerevisiae per day. Another factor was that gene expression is a noisy
process, so developing a control approach necessitates several experimental replica to eliminate
stochastic effects. On the other hand it is possible to simulate control systems in silico, which
greatly facilitates the development process. It is straightforward to evaluate the effectiveness of
different controller setups with a computer, given that a satisfying model of the process to be
controlled is at hand.
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CHAPTER ǌ. TOWARDS CONTROLLINGGENE EXPRESSION

Aěer developing a platform for the feedback control of the HOG pathway activity, the next
step would be to implement such a platform for the control of gene expression. Because of the
difficulties mentioned above, I ėrst investigated the applicability of different control approaches
in silico, before controlling gene expression in live cells. In the following section I present a two-
layered approach for gene expression control using theHOGcascade, which exploits the fact that
the signaling cascade and its gene expression response operate on different time-scales and can
be treated independently. ĉis approach guided the development of the gene expression control
platform presented later, even though it was not adopted wholesale. ĉe controller is based on a
model predictive control (MPC) approach, so the controller itself uses themodel to ėnd the best
control strategy.

ǌ.Ǌ.ǉ MŃĸĹŀ ĸĹŋĹŀŃńŁĹłŉ

To simulate the behavior of a gene expression controller we ėrst need a model of the underlying
process. We can then use this model to evaluate the controller. In addition the MPC approach
relies on amodel of the system, to predict the effect of possible control strategies. Several models
of the HOG cascade have been proposed (see Section Ǌ.ǉ.ǋ), but most of these are not suited for
controlling gene expression because of two problems. Firstly most of the models developed for
the HOG pathway describe the signaling cascade, while omiĨing the gene expression response.
Secondly, the complex structure of most HOG pathway models renders state estimation infeasi-
ble. In a biological system, only a limited numbers of variables can be measured simultaneously
in vivo, so for controlling the system themodel needs to be simple enough to recover the full state
from the limited variables that can be observed. For this reason I developed a simple switched lin-
earmodel, which relates anosmotic input proėle to the resulting gene expression response. While
the HOG signaling cascade responds within about ǋ minutes to an osmotic step shock, the gene
expression response is much slower [ǎǍ]. ĉis time-separation can be used to partition the pro-
cess into two connected modules, a signal transduction module and a gene expression module.
ĉis modular structure can be used to simplify the control problem. While the signal transduc-
tion module provides the input of the gene expression module, the two parts can otherwise be
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ǌ.Ǌ. COMPUTATIONAL INVESTIGATIONS

treated independently. ĉe structure of the signal transduction module is as follows:

if oext(t) ≤ oint(t) : (iso- or hypoosmotic conditions)

ḣ(t) = −γgh(t) (ǌ.ǉ)

˙oint(t) = koh(t)− (γo + γ′o)oint(t) (ǌ.Ǌ)

if oext(t) > oint(t) : (hyperosmotic conditions)

ḣ(t) = kg(oext(t)− oint(t))− γgh(t) (ǌ.ǋ)

˙oint(t) = koh(t)− γooint(t) (ǌ.ǌ)

In this model the only input is the relative external osmolarity oext(t), while oint(t) describes
the relative intracellular osmolarity whose variations result from glycerol synthesis and degrada-
tion/export, and h(t) denotes the activation of the HOG cascade corresponding to the nuclear
localization of the Hogǉ protein. ĉe relative osmolarity is deėned here as the difference be-
tween current and steady state value in normal media. In hyperosmotic conditions, the Hogǉ
activation is assumed to be proportional to the intensity of the hyperosmotic stress felt by the
cell oext(t)− oint(t), while in hypoosmotic conditions Hogǉ is not activated. ĉe inactivation of
Hogǉ is proportional to the amount of active Hogǉ. Active Hogǉ has a positive inĚuence on the
production of glycerol, which is modeled by a proportional term koh(t). ĉe glycerol channel
Fpsǉ is only open under hypoosmotic conditions, wherefore the term γ′ooint(t), which describes
glycerol diffusion throughFpsǉ is only present in these conditions. In addition I assume a propor-
tional degradation of glycerol γooint(t), which is always present. Gene expression is modeled by a
simple reaction-based model depicted in Figure Ǌǉ. It describes protein andmRNA levels, while
assuming an exponential degradation of both entities. mRNA production is proportional to the
amount of activeHogǉ, while protein synthesis is proportional to themRNA concentration. ĉe
model can either be interpreted as a stochastic model using the Gillespie algorithm [ǉǊǑ, ǉǋǈ],
or as a deterministic model with the following ODEs:

ṙ(t) = krh(t)− γrr(t) (ǌ.Ǎ)

ṗ(t) = kpr(t)− γpp(t) (ǌ.ǎ)
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ĉis is a standard way of modeling gene expression that has been applied in a similar manner
various times [ǉǋǉ].

DNA mRNA (r) Protein (p)

Ø Ø

km h(t) Kp

γr γp

Figure Ǌǉ: Gene expression model. Production of mRNA is proportional to Hogǉ activation
(h(t)), while protein prodution is proportional to the mRNA level. Both mRNA and protein are
degraded exponentially.

ĉe parameters of the signal transduction model have been determined by minimizing the
mean square deviation between model output and experimental data consisting of the localiza-
tion response of Hogǉ to different osmotic inputs (see Figure ǊǊ). For ėĨing, the global opti-
mization algorithm CMAES (see section Ǌ.ǌ) was used. Parameter values are listed in Table ǌ.ǉ.
For the gene expression model realistic parameter values have been used, because at the time of
the construction of this model, I did not have any gene expression data available. ĉe values of
the degradation parameters correspond to mRNA and protein half-lives of Ǎ and Ǌǈ minutes re-
spectively.

ko γo γ′o kh γh oi(Ƥ) h(Ƥ)
ǈ.ǈǈǍ ǈ Ǒ.ǈǍ ǌǐ ǉ.Ǌǉ ǈ ǈ.ǈǉǑ

kh γr kp γp r(Ƥ) p(Ƥ)
ǈ.ǉǋǐǎ ǈ.ǉǋǐǎ ǈ.ǋǌǎǎ ǈ.ǈǋǌǏ ǈ ǈ

Table ǌ.ǉ: Parameter values and initial conditions for the signal transduction (top) and for the
gene expression (boĨom)models.
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Figure ǊǊ: Cell response to different hyper-osmotic stresses and simulation of theHOGpathway
model. (A) Stresses of different intensities. Blue, green, and red plots correspond to ǈ.ǌ, ǈ.ǎ,
or ǈ.ǐM stress applied during Ǌ minutes. (B) Stresses of different durations. Blue, green, and red
plots correspond toǈ.ǎMstress appliedduringǊ, ǌ, or ǎminutes. Dashed and solid lines represent
experimental data and model predictions, respectively. All stresses started at time ǉ minute.

ǌ.Ǌ.Ǌ CŃłŉŇŃŀ ňŉŇĵŉĹĻŏ

Twovariables of themodel described above canbeobserved experimentally byĚuorescent labels:
the localization of Hogǉ and the gene expression output of the system, which are the outputs of
the signal transduction and gene expressionmodules. ĉis can be exploited to divide the control
problem into two smaller ones, which can be solved independently (see Figure Ǌǋ). In a ėrst
step we can search for a Hogǉ proėle that when applied to the gene expression system leads to
the desired gene expression proėle. ĉus, we regard the output of the signaling cascade as the
control input to the gene expression system. Aěerwards the controller searches for an osmolarity
proėle which implements theHogǉ proėle found in step ǉ. ĉis backstepping approach allows to
treat the two subsystems independently, which is advantageous because they operate on different
time scales. ĉus different time horizons for the control prediction and different sampling times
can be used for the two subsystems.
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Figure Ǌǋ: (A)ĉe osmotic stress response system can be split into two subsystems: A relatively
fast signal transduction systemand a relatively slow gene expression subsystem. ĉeoutput of the
signal transduction system, theHogǉnuclear localization acts as the input for the gene expression
system. (B) Separation of the control problem into two simper ones based on the separation of
the model.

CŃłňŉŇĵĽłŉň ĵłĸ ńĵŇĵŁĹŉŇĽŐĵŉĽŃł

Following the results of the control experimentsof theHOGcascade inSectionǌ.ǉ,which showed
that a prolonged activation of theHOGpathway is not achievable, I constrainedHogǉ proėles to
be repeated trapeze motifs, which have a maximal duration and have to be separated by a mini-
mal time. A Hogǉ proėle is described by the number of trapezoidal motifs n, a vector of trapeze
durations don and a vector doff describing the off durations (see Figure Ǌǌ). In addition there are
ėxed times for the increase and decrease, for the minimal time between two activations, and for
the duration of the plateau of Ǌ, Ǌ, Ǎ and ǉ minute respectively.

drelax doff1

don1

doff2

don2

Hog1

nuclear

localization

time

Figure Ǌǌ: Hogǉ proėle constraints. A Hogǉ proėle is made up by reoccurring trapeze motifs,
parametrized by a vector of plateau durations don and a vector of off-times doff. ĉe rise- and fall-
off-times of the trapeze are ėxed. In addition there is a minimal trapeze duration and a minimal
relaxation time. All times that are not variable are indicated as doĨed lines.

ĉe input of the signal transductionmodule is given by a piecewise constant osmolarity proėle
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oe(t) = ui if τ i ≤ t < τ i+ and ui ∈ [o, ƥ]with the discretization (τ , ..., τm) (see Figure ǊǍ).

H
o
g
1
 n

u
c
le

a
r 

lo
c
.

time

time

O1

O2

u0

u1

u2

u3

u4
u5

u6

u7 u8

O3

O4 O5

O6

O7

O8

O9

O
s
m

o
la

ri
ty
o
e
x
t

t0 t1

t0 t1

Figure ǊǍ: Realization of a trapezoidalHogǉ proėle by a piecewise constant osmotic input. Start-
ing from the trapezoidalHogǉmotif found during the ėrst step of the control process (top, doĨed
line), the model predictive controller searches for a piecewise constant osmolarity proėle which
will implement the foundHogǉ proėle. In this example the value of the control u is found based
on the observation Oƥ. Aěer that a new observation is made and a control value for the new in-
terval is chosen.

AŀĻŃŇĽŉļŁ

Using the backstepping strategy, the controller starts by identifying a Hogǉ proėle, which when
implemented will lead to the desired gene expression proėle. ĉis Hogǉ proėle is found by min-
imizing the mean squared deviation (MSD) between the gene expression model output and the
target protein proėle within the next time window (in this case ǉǈǈ minutes). ĉe parameters
optimized here are the number of trapezes n, their durations don and the off-times doff. For the
parameter search the global optimizer CMAES is used. In practice one parameter search is done
for each value of n = ƥ, Ʀ, ..., k and the proėle with the best ėt is selected. ĉis is implemented in
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the matlab function [n,don,doff] = searchHogProfile(t,sge,target)with the current time
t, the current state of the gene expression model sge and the protein proėle target.

Once aHogǉproėle has been found, the controller searches for the osmolarity proėle resulting
in the desiredHogǉproėle. ĉecontrol input is again foundby a parameter search usingCMAES,
but on a time horizon shorter than the one for the gene expression proėle (in this case Ǌminutes).
Here theosmolarityparametersu , ...um are foundby the functionu = searchOsmProfile(t,sst,tp,n,don,doff)
with the current time t, the state of the signal transduction model sst and tp, n, don, ddur deėning
the Hogǉ proėle with the time point of the ėrst pulse tp.

ĉe separation of the control problem into two smaller ones greatly facilitates the computa-
tion of a control strategy, because this way the computation of a desired Hogǉ proėle is only
done when a new gene expression measurement is available. Since gene expression changes oc-
cur much slower than changes of the Hogǉ signaling activity, gene expression requires a lower
measurement frequency, which greatly facilitates computation time. A drawback is that the con-
troller will react less dynamic to (unexpected) changes in gene expression, compared to a con-
troller without this separation feature.

ǌ.Ǌ.ǋ RĹňŊŀŉň

To test the suitability of this control approach I applied it to drive the same model which is used
by the MPC. Of course this is not a fair evaluation of the quality of the controller because the
same model is used for control and evaluation, but it gives an insight whether the proposed con-
trol strategy might be able to drive gene expression in live cells. ĉe signal transduction module
was simulated using the ODE interpretation, while the gene expression module was either inter-
preted as a deterministic ODE system or as a stochastic system using the Gillespie algorithm. A
reason for using only deterministic simulations for the signal transduction module is that most
of the variability of the system stems from gene expression, while the signaling cascade shows a
more or less deterministic behavior. Two control targets were selected, ėrst to maintain protein
concentration at a given level and second tomake the protein level follow a sinusoidal signal. ĉe
results are shown in Figure Ǌǎ and indicate the feasibility of a Hogǉ pulse modulated control ap-
proach. Even in case of the stochastic interpretation of the gene expressionmodule, which shows
signiėcant levels of noise, the protein level stays within admissible bounds around the target.
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Figure Ǌǎ: Gene expression control simulation. ĉedoĨed blue line represents the target protein
proėle, the solid blue line the observed protein level, the green line the nuclear level of Hogǉ and
the red line the osmotic input (xǍǈ). ĉe plots show deterministic control simulations with a
constant (A)or time sinusoidal (B) protein target and stochastic control simulations for the same
target proėles (C andD).

ǌ.ǋ CŃłķŀŊňĽŃł

As a ėrst step towards the feedback control of gene expression, I have presented here a control
platform for theHOG signaling cascade, which to the best of my knowledge was the ėrst aĨempt
to control a signaling cascade in real time and in vivo at the time of publication (January Ǌǈǉǉ,
[ǋǑ]). Controlling the Hogǉ localization to ėxed target values is not possible for extended times
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CHAPTER ǌ. TOWARDS CONTROLLINGGENE EXPRESSION

due to the feedback mechanisms triggered by active Hogǉ, while repeated activations of the cas-
cade, with relaxation periods in between the activations, are feasible. ĉis indicates that a control
of gene expression via the HOG cascade will only work if it does not require the constant activa-
tion ofHogǉ. ĉis result suggests the use of a frequency encodedHogǉ signal to achieve a certain
gene expression proėle, in contrast to an amplitude encoded signal in which Hogǉ needs to be
constantly active to some degree.

In the secondpart of this chapter I presented a computational investigationof a geneexpression
control strategy which uses a frequency encoded Hogǉ signal. In this approach the Hogǉ signals
are constrained to be trapeze likemotifs, with aminimal andmaximal plateau time and aminimal
relaxation time between consecutiveHogǉ activations. Exploiting the different time-scales of the
gene expression and signal transduction processes, the controller separates the control problem
in two smaller ones following a backstepping approach. In a ėrst step, given a desired protein
proėle, the controller ėnds a Hogǉ proėle. In a second step the osmolarity proėle leading to the
desired Hogǉ proėle is identiėed. Using an MPC strategy, this controller works well in in silico
simulations even in the presence of realistic levels of noise. In the next chapter I will focus on the
implementationof a similar control strategy in vivo. ĉe results of the computational investigation
have been published [ǉǋǊ].
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5
A platform for the control of gene expression

Ǎ.ǉ TŃŌĵŇĸň ĵ ĻĹłĹ ĹŎńŇĹňňĽŃł ķŃłŉŇŃŀ ńŀĵŉĺŃŇŁ

In the previous chapter I presented a platform to control HOG signaling activity as well as com-
putational investigations of how this platform could be extended to control gene expression. In
this chapter I will describe the development of such a gene expression control platform. First ex-
perimental tests quickly revealed that a simple adoption of the computational method proposed
in the previous chapter was not feasible due to experimental constrains. Firstly, the method pro-
posed assumes that the osmolarity of the cellular media can be changed almost instantaneous
and in a continuous manner. ĉis can be emulated with the Y-shaped device which I used for the
control of theHOGcascade, via a pulsewidthmodulation. But ėrst gene expression experiments
using this device showed that it is not suited for experiments lasting longer than about Ǌ hours,
because aěer that time cells tend to detach from the glass slide. ĉis was the reason for using the
H-shaped device described in Section ǋ.Ǌ.Ǌ which is well suited for long time experiments. On
the other hand the H-shaped device has a slow switching time (about ǋ minutes) which forbids

ǎǑ



CHAPTER Ǎ. A PLATFORMFORTHECONTROLOFGENE EXPRESSION

the emulation of a continuous osmolarity signal by a pulse with modulation strategy as I used it
for the control of the HOG cascade. A second problem was the assumption that the localization
of Hogǉ could be measured over the whole experiment. ĉe high imaging frequency required to
capture the dynamics of Hogǉ in combination with the long time scales on which gene expres-
sion changes take placemakes it unfeasible tomonitor theHOGpathway activity over the whole
course of a gene expression control experiment. For this reason, the controller presented here
does not take into account the HOG pathway activity, but relies on gene expression measure-
ments as the sole output of the system.

On the positive side, theMPC approach, in particular the frequency encoding of gene expres-
sion to limit natural adaptation, can be adopted with only slight modiėcations. Because the only
output of the system which is measured is the gene expression response, state estimation might
not be possible for the model I presented previously, wherefore I use a simpliėed model here.
ĉe two-layered control approach, which treats the signaling cascade and the gene expression
response independently has not been used, because the output of the HOG cascade cannot be
observed,

ĉe goal of developing this control platform is to demonstrate the ability to control gene ex-
pression in vivowith high accuracy using the HOG signaling cascade for both time-constant and
time-varying targets. Because of the natural feedbackmechanisms involved in theHOG cascade,
this would demonstrate that control of a biological system is feasible even in the face of strong
perturbations. Fixed control targets are interesting because they allow to study the effects of
well-controlled, steady perturbations of a cellular protein level. Time varying perturbations on
the other hand can be used to probe the dynamics of a system. In particular they could be used to
decipher the functioning of gene networks [ǋǎ, ǉǊǍ]. ĉe control platform is supposed to be able
to control either single cells or populations of cells, so these two approaches can be compared.
In principle the control of a population of cells should be easier than single cell control because
stochastic effects average out. But single cell control should bemore precise at the single cell level,
because the controller can directly react to the output of the controlled cell.

Ǎ.Ǌ EŎńĹŇĽŁĹłŉĵŀ ňĹŉŊń ĵłĸ ķŃłŉŇŃŀŀĹŇ ĸĹŋĹŀŃńŁĹłŉ

ĉis section describes the setup of the gene expression control platform. ĉemicroĚuidic device
used here is the H-shaped device described in section ǋ.Ǌ.Ǌ.
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Ǎ.Ǌ.ǉ YĹĵňŉ ňŉŇĵĽł

In the yeast strain I used for this work (yPHǑǉ, see Table ǋ.ǉ) the STLȕ gene has been replaced
by the Ěuorescent marker yECitrine. STLȕ codes for a proton glycerol symporter located in the
cell membrane which is involved in the active uptake of glycerol from the media. Deleting STLȕ
causes poor growth on glycerol basedmedia. Despite the fact that importing glycerol should help
cells to survive stress, osmosensitivity was only observed in combination with other gene dele-
tions of genes involved in osmotic adaptation [ǉǋǋ]. STLȕ is one of the genes most strongly ac-
tivated by osmotic stress [ǋǋ], without responding to the general stress response transcriptional
factors MsnǊ and Msnǌ [ǋǌ]. An activation by the general stress response could pose a prob-
lem in control experiments, because this could lead to unmeant activations of gene expression
by other possible stresses. ĉe strong activation in response to osmotic stress together with the
independence from the general stress response make STLȕ a perfect candidate for a gene control
using the HOG cascade. In addition Hogǉ has been fused to the Ěuorescent protein mCherry in
the strain I use to observe the localization ofHogǉ. Even though this information cannot be used
for gene expression control due to the bleaching problemsmentioned above, it has been used for
different preliminary investigations.

Ǎ.Ǌ.Ǌ IŁĵĻĹ ĵłĵŀŏňĽň ĵłĸ ĺŀŊŃŇĹňķĹłŉ ŅŊĵłŉĽĺĽķĵŉĽŃł

For the detection and tracking of cells I have used the circular Hough transform described in
Section ǋ.ǉ.ǉ and the tracking method described in Section ǋ.ǉ.Ǌ. Levels of pSTLǉ-yECitrine
Ěuorescence have been quantiėed as described in Section ǋ.ǉ.ǌ.

Ǎ.Ǌ.ǋ MŃĸĹŀĽłĻ

Because I will use a MPC strategy to control gene expression, a model of the system that relates
the osmotic input to the observed gene expression output is required. Since the only output we
can observe is the gene expression response given by the Ěuorescence of yECitrine, it might be a
problem to reliably estimate the state of themodel developed for the computational investigation
in Section ǌ.Ǌ.ǉ. For this reason I developed a simple two-dimensional ODE model which has
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the following form:

ẋ (t) = u(t− τ)− g x (t) (Ǎ.ǉ)

ẋ (t) = k x (t)− g
x (t)

K+ x (t)
(Ǎ.Ǌ)

In this model x denotes the recent osmotic stress felt by the cell and x the protein Ěuorescence
level. ĉe function u(t − τ) describes the osmotic input which is shiěed by τ minutes, thereby
aggregating time delays caused by signal transduction, gene expression and protein synthesis and
folding. In principle the delays for gene expression and protein synthesis should appear in equa-
tion Ǎ.Ǌ, however in this speciėc case it is mathematically equivalent and computationally more
efficient to group all delays in a unique term in the input. ĉe osmolarity function u is based on a
piecewise linearization of the microĚuidic switch dynamics which have beenmeasured using ink
(see Figure ǉǑ). ĉe recent osmotic stress x is modeled by a term integrating the osmotic stress
(u(t − τ)) and a linear decay term (−g x (t)), which lets the inĚuence of past osmotic stresses
diminish exponentially with time. ĉe Ěuorescence level increases linearly with x with rate k .
ĉe degradation term of the Ěuorescence is modeled by a saturating Michaelis-Menten kinetic.
ĉis is a non-standard way of modeling protein decay, which is usually assumed to be exponen-
tial due to dilution caused by exponential cellular growth. In my experiments I observed that in
response to repeated osmotic shocks the cellular Ěuorescence increased linearly over a time of
more than ǉǈ hours (see Figure ǊǏ). ĉis observation is not in agreement with an exponential
decay term using realistic protein turnover rates if we assume a quasi constant production rate in
the condition of repeated osmotic shocks. Because it has been shown that the protein degrada-
tionmachinery can saturate in vitro [ǉǋǌ], I assumed a saturating degradation term. On the other
hand experiments showed that the pSTLǉ-yECitrine expression oěen reacts stronger to osmotic
inputs towards later times during an experiment, which suggests that long time memory effects
might be responsible for the observed dynamics.

ĉeparameters of themodel have been determined by ėĨing themodel to different characteri-
zation experiments using the global optimization toolCMAES. I exposed the cells to twodifferent
types of input proėles to determine the dynamics of the Hogǉ activated STLȕ expression. In the
ėrst type I sent a single osmotic shock lasting between Ǎ and ǐ minutes every ǌ hours, in order
to get an idea of the effect of single pulses and to observe the protein degradation dynamics in
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g g τ k K
ǌ.ǈǊ×ǉǈ− ǋǏ.Ǎ Ǌǈ ǈ.ǐǍǉ ǏǍǈ

Table Ǎ.ǉ: List of parameters.

this system. ĉe second type of characterization experiments consisted of osmotic shocks sent
repeatedly every ǋǈ minutes, to observe the maximal production capability of the system. Based
on these observations, I set the time delay τ to Ǌǈ minutes and the protein level corresponding
to degradation half-saturation K to ǏǍǈ. I chose the value of K, such that degradation does not
saturate in the single shock experiments. ĉe model shows a fair but not perfect ėt to the data
(see Figure ǊǏ), which is already good given that this model describes a complex signaling path-
way including its gene expression response with just two variables. ĉe parameter values of the
model are listed in Table Ǎ.ǉ.

Ǎ.Ǌ.ǌ SŉĵŉĹ ĹňŉĽŁĵŉĽŃł

For state estimation I used an extended Kalman ėlter (EKF) (see Section Ǌ.ǋ.ǋ) with a measure-
ment noise (R) of ǊǍǈǈ and the covariance matrix of the process noise (Q) diag(ǈ.ǋǏ,ǑǊǍ). ĉe
value ofRhas been chosen by estimating the variance of the observations fromexperimental data.
ĉe ratio of the diagonal values inQ has been determined by the steady state values of x and x .
ĉe actual values of Q have been determined by ensuring consistency between the innovation
residuals (the difference between model prediction and observation) and the variance of the in-
novation residuals, as estimated by the Kalman ėlter.

Ǎ.Ǌ.Ǎ CŃłŉŇŃŀ ňŉŇĵŉĹĻŏ

ĉe control strategy I use for gene expression control is similar to the one presented in the previ-
ous chapter, with the exception that no measurement of Hogǉ localization is taken into account.
Similar to the previous strategy, activations of Hogǉ are limited in both duration and frequency
to prevent the accumulation of glycerol and the resulting adaptation of the cell. In contrast to the
previous control experiments, in which a continuous osmolarity signal could be emulated using
fast switches and by exploiting the low pass ėltering capabilities of the cells (see Section ǌ.ǉ.ǉ),
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Figure ǊǏ: Calibration gene expression data andmodel ėt. (A-D) Isolated osmotic shocks lasting
Ǎ,ǎ,Ǐ and ǐ minutes applied every ǌ hours. (E-H) Osmotic shocks lasting Ǎ,ǎ,Ǐ and ǐ minutes
applied every ǋǈ minutes. Fluorescence of yECitrine under control of the STLȕ promoter was
quantiėed. Mean and standard deviation are shown as blue lines and blue envelopes. ĉemodel
was ėĨed to themean. Model simulations are shown in red. Note that the Ěuorescence intensities
reached in repeated or isolated shock experiments are signiėcantly different

theH-shapeddeviceonly allows to switch relatively slowlybetweennormal and sorbitol-enriched
media. To prevent adaptation mechanisms I limited the shock durations to values ranging from
Ǎ to ǐ minutes, and ensured that consecutive pulses are separated by at least Ǌǈ minutes. ĉe Ǎ
minute lower bound ensures that the cells actually feel the stress, because shorter stresses might
be diluted by the time they have traveled from the valve to the imaging chamber. ĉese input
constraints are one reason for usingMPC, which allows easy integration of constraints.

ĉe Ěuorescence of yECitrine is observed every ǎ minutes and the state of the system is esti-
mated using the EKF.Using the current state of themodel, the controller searches then for admis-
sible osmolarity proėles minimizing the mean squared deviation between the model output and
the target protein proėle over a ǉǊǈminutes time horizon. ĉis problem is recast into a parameter
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search problem in which an osmolarity proėle is characterized by the corresponding stress start
times and durations. In practice a single optimization problem is solved using CMAES for each
number of stresses considered (ǉ-ǋ). Because image analysis and computation of the best control
strategy may take up to ǋ minutes, the input is not applied immediately when the image is taken
but ǋ minutes aěer this observation. An input is only applied in case the controller found that a
shock should be applied within the next ǎ minutes (before the next observation). If nothing is to
be applied, computation of the best control strategy is repeated for the next observation.

To test whether this control strategy yields an effective feedback controller, I tested it in silico
in the samemanner as in the computational investigation in the previous chapter. I again used the
MPC algorithm to drive the same model of the systems that is also used to predict its behavior.
In this case the system state is estimated by the EKF based on the observation of only the gene
expression output of the model x . ĉe result shown in Figure Ǌǐ indicates that the proposed
MPC strategy is effective.
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Figure Ǌǐ: Simulation of a control experiment for a time-consant (A) and time-varying (B) target
proėle. ĉe controller is driving the same model as used for control. ĉe reference target proėle
is shown as a dashed red line and the result of the simulation as a pink line. ĉe results indicate
that the controller implementation is effective.
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Ǎ.ǋ EŎńĹŇĽŁĹłŉĵŀ ŇĹňŊŀŉň

Using the control platform described above, I controlled the cellular Ěuorescence of yECitrine
in either populations of all the cells within the microscopic ėeld of view, or alternatively in one
single cell arbitrarily chosen at the beginning of the experiment. All experiments lasted at least ǉǍ
hours, starting with only few cells in the beginning, while ending with ǉǈǈ-ǋǈǈ cells in the ėeld
of view.

Ǎ.ǋ.ǉ PŃńŊŀĵŉĽŃł ķŃłŉŇŃŀ ĹŎńĹŇĽŁĹłŉň

As for the single cell control experiments I chose two different types of targets: (i) to maintain
the average Ěuorescence level at a given constant value (set-point experiment) or (ii) to make
it follow a time-varying target proėle (tracking experiment). It can be seen in Figure ǊǑ that the
controllerworks properly for gene expression control at the population level. For the set-point ex-
periments a certain time is required to reach the target value, aěer which the average Ěuorescence
stays within reasonable tight bounds around the reference. ĉe lowest target value I tested is Ǌǈǈ
Ěuorescence units (f.u.) and the highest is Ǌǈǈǈ f.u. (see Figure ǋǈ), showing that the controller
performs well within a ǉǈ-fold range, even though there is an overshoot for the low target value
(Ǌǈǈ f.u.). To evaluate the effectiveness of the feedback loop, I also tested an open loop strategy,
in which the control input is computed before the experiment based only on the model. Figure
ǋǉ shows that this approach does not work, the feedback loop is required for precise control in
this system. ĉe deviation between the model simulation and the actual behavior of the system
indicates the effectiveness of the feedback loop, but also highlights that the model does not cap-
ture very well the dynamics of the system, which is not surprising for a simple two-dimensional
model.

For the tracking experiments I chose a trapeze function with the plateau at ǉǍǈǈ f.u. and a
sinusoidal wave also oscillating around ǉǍǈǈ f.u. In particular sinusoidal protein expression pro-
ėles will be an important tool to decipher the dynamic behavior of gene networks. ĉe results of
the tracking experiments in Figure ǊǑ indicate that the controller is able to make gene expression
follow a varying target. Of course the admissible target functions are constrained by the maxi-
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Figure ǊǑ: Control of gene expression at the population level. For all plots the target protein level
is indicated as a reddoĨed line and theobservedĚuorescenceof pSTLǉ-yECitrine is indicated as a
blue line with light blue envelopes indicating the standard deviation. ĉe osmotic input proėle is
indicated at the boĨom of each plot and is color coded. (A andB) Set point control experiments
with target values ǉǈǈǈ and ǉǍǈǈ f.u. (C and D) Tracking control experiments. ĉe proėle in
(C) has a trapezoidal shape with a maximum of ǉǍǈǈ f.u. and the proėle shown in (D) shows a
sinusoidal shape.

mal induction and degradation rates of this system. For the trapeze, the increasing slope is less
steep than what the system is able to deliver. Overall these results indicate that the controller is
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Figure ǋǈ: Gene expression control range. To determine the upper and lower limits in which the
controller can drive gene expression, set point control experiments with high and low target val-
ues were conducted. (A) Set point population control with a target value of Ǌǈǈ f.u. ĉe control
shows a signiėcant overshoot in the beginning, but aěer ∼ǋǈǈ minutes, the observed Ěuores-
cence follows the target faithfully. Lower control objectives are not possible because the target
would be too close to the background Ěuorescence of the cells which is around ǋǈ f.u. (B) Set
point control to test the upper limit of the control range using a target value of Ǌǈǈǈ f.u. ĉe
control works but shows signiėcant levels of noise.

functional.

Ǎ.ǋ.Ǌ SĽłĻŀĹ ķĹŀŀ ķŃłŉŇŃŀ ĹŎńĹŇĽŁĹłŉň

In addition to controlling cell populations, I was interested whether control was possible at the
single cell level. Many biological questions, for example whether cells express genes in a contin-
uous or in a burst-like manner, can only be answered by looking at individual cells rather than
population averages [ǉǋǍ]. Being able to control gene expression in single cells would help to
generate precise perturbations, which would help to investigate single cell dynamics.

For the control of single cells I manually chose one cell at the beginning of the experiment,
which is then followed by the tracker. In the rare case that the cell is lost, the experiment is
aborted. ĉe target proėles were the same as for the population control. As shown in Figure ǋǊ,
the platform also performs well for single cell control, even though single cell control is a priori
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Figure ǋǉ: Open loop control experiments. To test if a feedback controller is really necessary
to control gene expression, the control was computed beforehand based on a simulation of the
model and the found control strategy was applied to a population of cells. ĉe model simula-
tion (pink line) shows an almost perfect control, indicating that the model predictive control
approach is functional. When applying the control strategy to live cells signiėcant deviations be-
tween model simulation and the observed Ěuorescence were found. (A)Open loop control of a
ėxed target at ǉǍǈǈ f.u. ĉe observed Ěuorescence does not follow the target and does not even
converge to a ėxed value. (B) For the open loop control using a sinusoidal target, the observed
Ěuorescence shows oscillations with the right frequency, but the amplitude is not captured prop-
erly and the oscillation is out of phase. ĉese results indicate that closed loop control is required
for a precise gene expression control.

more difficult than population control, because gene expression noise is not averaged out. Note
that sometimes the controlled cell behaves signiėcantly differently from the rest of the popula-
tion (see for example Figure ǋǊA). Comparing control inputs for different experiments with the
same target value showed that the applied osmolarity proėle varies considerably (see Figure ǋǋ),
suggesting that closed loop control was necessary for the control of single cells.

One question that remains to be investigated is whether controlling a single cell gives beĨer
results compared to a cell in a population control experiment. We can deėne the mean square
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Figure ǋǊ: Control of gene expression at the single cell level. A single cell was arbitrarily chosen
at the beginning of the experiment, and its Ěuorescence (orange line) was used to feed the con-
troller. ĉe average Ěuorescence and standard deviation of the population are shown as a blue
line and as a blue envelope respectively. (A andB) Set point control experiments with target val-
ues ǉǈǈǈ and ǉǍǈǈ f.u. ĉe population mean also follows the target but with less accuracy than
the controlled cell. In some experiments (seeA) the populationmeanbehavesmarkedly different
from the single cell. (C andD) Tracking control experiments. InC the control target is a trapeze
with a plateau at ǉǍǈǈ f.u., while the target inD has a sinusoidal shape.
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Figure ǋǋ: Repetitions of single cell control experiments. ĉe control inputs for different single
cell control experiments vary, even though the target value is the same (in this case ǉǍǈǈ f.u.). ĉis
highlights the need for closed loop control, because cellular variability requires different inputs
to make different cells follow the target proėle faithfully.

deviation (MSD) of a trace, either of a single cell or of a population mean as its average squared
difference from the target value.

dmsd =
ƥ
n

n∑
i=

(xi − ri) (Ǎ.ǋ)

with the trace X = (x , ..., xn) and the target function R = (r , ..., rn). If we look at the MSD of
either the Ěuorescence of the controlled cells from single cell control experiments or theMSD of
the mean Ěuorescence in a population control experiment, population control performs clearly
beĨer (see Figure ǋǌ). But this comparison is not fair because noise in the population control
experiment is averaged over the population. Instead we can compare the MSD of the single cell
control to the average of the MSDs for the single cells in the population control experiments.
Note the difference between the MSD of the population mean and the mean of the single cell
MSDs. In practice I omiĨed the data for the ėrst ǊǍǈ minutes for the set-point and sine-wave ex-
periments, because of the time required to reach the target value. Also only cells which have been
successfully tracked for at least Ǎ (set-point) or Ǐ (tracking) hours were considered. Figure ǋǌ
shows histograms of the MSDs of single cells in a population control experiment and compares
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them to the MSD of single cell control runs. ĉe histograms indicate that the control perfor-
mance of single control is beĨer than the control performance for an average cell in a population
control experiment (compare the orange bars (MSD of single cell control) to the black bars (av-
erage MSD of population control) in Figure ǋǌ). To have a quantitative answer, we can then use
a statistical test to determine whether the distribution of theMSDs for single cell controls equals
the distribution of the single cell MSDs in the population control experiments. Hence the null
assumption (H ) is thatMSDs in single cell and population control experiments follow the same
distribution. ĉe alternative assumption (H ) is that the MSDs are statistically smaller in the
single cell control. Because of the unknown distribution of MSDs, a non-parametric test should
be used to asses whether the two distributions are the same. A standard test whether two sam-
ples of observations have smaller or larger values than the other is theWilcoxon-Mann-Whitney
(WMW) test [ǉǋǎ], which assumes the same distribution of the two samples under the null hy-
pothesis. Because it is expected that the variance of theMSDs is smaller for the single cell control,
the WMW test does not apply to this case. Instead I used the Fligner-Policello (FP) test [ǉǋǏ],
which assumes the two samples to have the samemedian and to be symmetric, but does not rely
on other assumptions about the distributions. When applying this test to the set-point experi-
ments, it gives a highly signiėcant result for the target of ǉǍǈǈ f.u. (p-value ǉ.Ǐ·ǉǈ− ), while the
result for the target of ǉǈǈǈ f.u. is not statistically signiėcant. ĉe single cell control data available
for the tracking experiments did not suffice to calculate statistics.

Another interesting question is whether single cell control reduces gene expression noise. For
the set-point experiments, we can deėne the gene expression noise of a cell as the Ěuorescence
standard deviation over the Ěuorescence mean. ĉis value can be used analogical to the MSD to
compare the distributions of single cell control and population control using the FP test. Results
showed that for both targets the noise level was signiėcantly reduced in case of single cell control
(see Table Ǎ.Ǌ). For histograms of the noise level see Figure ǋǌE-F.

Ǎ.ǌ CŃłķŀŊňĽŃłň

In this section I presented a control platform, able to control gene expression in real time at both
population and single cell levels. Even though the control quality might seem poor when com-
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Experiment Nǉ NǊ Ù P value
MSD, T = ǉǈǈǈ f.u. (Figure ǋǌ A) ǑǊ ǋ ǉǏǉ ǈ.ǉǍ
MSD, T = ǉǍǈǈ f.u. (Figure ǋǌ B) Ǐǋ ǋ ǉǏǊ ǉ.Ǐ×ǉǈ−

Noise level, T = ǉǈǈǈ f.u. (Figure ǋǌ E) ǑǊ ǋ ǊǈǊ ǋ.Ǐ×ǉǈ−

Noise level, T = ǉǍǈǈ f.u. (Figure ǋǌ F) Ǐǋ ǋ ǉǌǌ ǐ.Ǎ×ǉǈ−

Table Ǎ.Ǌ: Computation of the Ù statistic and its associates P value for MDSs and noise levels of
the two set-point experiments using the FP test.

pared to technical control systems, it has to be taken into account that I control a noisy biological
system which could not be controlled before in live cells. Control works for both time-constant
and time-varying target proėles, even though important features like the feedback mechanisms
of the HOG cascade have not been included in the model used by the controller to predict the
systems response. Because good control results are possible using a very coarsemodel of the con-
trolled system, it should be easy to modify the platform to use other gene inducible systems than
the HOG cascade and I will show in the next chapter how this is possible using the methionine
inducible promoter. I showed that single cell control is more precise compared to the control of
a cell within a population and that single cell control reduces gene expression noise. ĉis sug-
gests that the control of single cells might play an important role in understanding the dynamics
of cellular systems.
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Figure ǋǌ: Comparison of control quality and noise level between single-cell and population con-
trol experiments. (A-D)Histograms showing the distributions of the single-cell MSDs in popu-
lation control experiments. ĉeMDS of themean is indicated as a blue bar with a square and the
mean of the single cell MDSs is indicated by the black bar with a circle. MSDs of single cell con-
trol experiments are shown as orange bars (*). (A)Target control at ǉǈǈǈ f.u. (B)Target control
at ǉǍǈǈ f.u. (C)Trapeze control. (D) Sinewave control. (E andF)Histograms of the noise levels
of the single cell Ěuorescence in the ǉǈǈǈ (E) and ǉǍǈǈ (F) set-point control experiments. ĉe
noise levels of the mean of the population are indicated as blue bars (with square), means of sin-
gle cell noise levels as black bars (with circle) and noise levels for single cell control are indicated
as orange bars (*).
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6
Extension of the gene expression control platform

In the previous chapter I presented an integrated platform for the control of gene expression
which uses the HOG signaling cascade as a means to activate gene expression. In principle it
should be straightforward to adapt the setup I have proposed to use another gene induction sys-
tem. Ideally thiswouldonly necessitate the adaptionof themodelwhichpredicts the gene expres-
sion response and in addition minor changes to the way the control is computed (e.g. different
input constraints). Together with the master student Aishah Rumaysa Prastowo we investigated
this question in the course of an internship. ĉe work I present in this chapter has been done by
Aishah Rumaysa Prastowo under my supervision.

ǎ.ǉ DĹŋĹŀŃńŁĹłŉ ńŇŃķĹňň

We decided to use the methionine repressible promoter of theMETȗ gene (see Section Ǌ.Ǌ.ǉ) as
a gene induction system. ĉe choice of this systemwasmotivated by the fact that a model simple
enough for controlling purposes has already been proposed by Charvin et al. [ǉǊǐ]. In addition
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GillesCharvin kindly provided uswith the yeast strain he had used to generate the data themodel
is based on. Another option would have been to use a tetracycline controlled promoter, with the
advantage that this gene activation system stems frombacteria and is not naturally present in yeast
cells, which would have ruled out possible pleiotropic effects of the METǋ system.

ĉe strain used in this work carries a Venus Ěuorescent protein fused to a fast degradation tag
under the control of a METǋ promoter (yPHǉǉǋ, see Table ǋ.ǉ). In [ǉǊǐ] the authors used this
strain to illustrate the capabilities of their newlydevelopedmicroĚuidicdevice in long-termexper-
iments. In addition they characterized theMETǋ activated gene expression in response to a shiě
of the cells to media lacking methionine for several durations and used this data to parametrize
a simple gene expression model. ĉe model they proposed is a linear two-dimensional switched
ODEmodel comprising only the folded and unfolded Ěuorescent protein levels (see Figure ǋǍ).

P P*

Ø Ø

γ β

  ν   ν

transcription

translation

maturation

Figure ǋǍ: Gene expression model proposed by Charvin et al. [ǉǊǐ]. ĉe model comprises the
unmatured protein level (P) and thematured version (P∗). Unmatured protein is produced with
rate γ and then converted in a maturation step to matured protein with rate β. Both, unmatured
and matured protein are degraded with a rate proportional to ν.
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ĉe equations of this model read

if methionine is present:

Ṗ(t) = −(β+ ν)P(t) (ǎ.ǉ)

if methionine is not present:

Ṗ(t) = γ − (β + ν)P(t) (ǎ.Ǌ)

Ṗ∗(t) = βP(t)− νP∗(t) (ǎ.ǋ)

with P the level of the unfolded protein and P∗ the folded protein. If no methionine is present,
P is transcribed with rate γ. ĉe maturation step, in which unfolded protein P folds into P∗, is
modeled by a ėrst order reaction with rate β and both P and P∗ are degraded with a rate propor-
tional to ν. Charvin et al. parametrized the model by ėĨing it to data produced by transferring
cells for deėned durations to media lacking methionine in order to activate theMETǋ promoter.
In addition they used cycloheximide which blocks protein production, to infer the folding rate of
the Venus Ěuorescent protein.

Because we will use this model in control experiments that last ǉǍ hours, the model needs
to be able to predict the expression response for longer periods than observed by Charvin et al.
We investigated the protein production dynamics of this system by alternating the cellular media
between media lacking methionine (on) and media containing methionine (off, Ǌǈǈ mg/L). In
each experiment, the timewithmethionine equaled the timewithout (symmetric input), and the
switching times were ǉǍ, ǋǈ, ǌǍ and Ǒǈminutes respectively. We observed that for all conditions,
apart from theǑǈminutes input, Ěuorescence levels oscillate aroundaėxedvaluewithoscillations
inducedby the on-durations (seeFigure ǋǎ). For the Ǒǈminute symmetric input, the overall Ěuo-
rescence increases over the ǉǍ hours period. Nextwe tried to identify themodel parameters using
data from the different experimentswith the global optimization procedureCMAES (see Section
Ǌ.ǌ). Probably because of the simplicity of the model we were not able to identify a parameter
set with which the model is able to reproduce all experiments (see Figure ǋǎ). Taking this into
account we decided to use model parameters that have been ėĨed only to the ǌǍ minutes pulse
experiment (see Figure ǋǏ) andwe constrained our control input to pulses of ǌǍminute duration.
An additional constraint on the input was that aěer each on-duration (the duration with media
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lackingmethionine), we imposed aminimal period of ǊǍminutes in which no other on-duration
is applied.
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Figure ǋǎ: Calibration of pMETǋ-Venus gene expression and model ėt. ĉe cellular media is al-
ternated between media without methionine (on, red bars) and media containing methionine
(off). ĉe on and off phases lasted ǉǍ (A), ǋǈ (B), ǌǍ (C) and Ǒǈ (D)minutes. ĉemean cellular
Venus Ěuorescence is shown as a blue line and the Ěuorescence standard deviation as a blue en-
velope. ĉe model shown in Figure ǋǍ was ėĨed to all four experiments simultaneously and the
resulting model simulations are indicated as red lines.

ĉe control strategy we applied was very similar to the one described in the previous chapter.
ĉe model predictive controller identiėed the best control strategy by simulating the model for
different input proėles for the upcoming Ǌǈǈ minutes. ĉis search was done using CMAES by
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Figure ǋǏ: Model ėĨed only to the gene expression experiment shown in Figure ǋǎC with on
and off durations of ǌǍ minutes. Due to its simplicity, the model is not able to reproduce all gene
expression data, but a single experiment can be ėĨed.

incorporating a constraint preventing two consecutive on-pulses separated by less than ǊǍ min-
utes. ĉis optimization was only done if a pulse at the current timewas possiblemeaning that the
last pulse had ended at least ǊǍ minutes ago. ĉe system state was estimated using an extended
Kalman ėlter (see Section Ǌ.ǋ.ǋ) and the experimental conditions were the same as for the con-
trol using theHOG cascade (an observation every ǎminutes). As for the control using theHOG
system, the observed time-lag was dealt with by shiěing the input by ǊǍ minutes.

ǎ.Ǌ RĹňŊŀŉň

We used this controller to drive protein expression in a population of cells to a ėxed target value
of Ǌǈǈ f.u. (set-point experiment). ĉe result displayed in Figure ǋǐ shows that the control works
in principle, but the long on-period of ǌǍ minutes causes large oscillations around the reference
state. In addition the target value Ǌǈǈ f.u. is similar to the mean value reached in the ǌǍ minute
calibration experiment (see Figure ǋǏ), which suggests thatmuch higher Ěuorescence values can-
not be reachedwithout increasing the on-duration. A possible improvement of this control setup
would be to allow for varying on-durations, which would necessitate the development of amodel
able to predict the gene expression response to various on-durations. ĉis should allow to limit
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the oscillations by using shorter pulses and also to reach higher expression levels, by using longer
pulses. On the other hand we have demonstrated, that it is possible to transpose the gene ex-
pression control platform presented in the previous chapter to another gene induction system,
without major modiėcations.
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Figure ǋǐ: Gene expression control experiment using the METǋ promoter. ĉe target value was
set to Ǌǈǈ f.u. and the input was constrained to on-times lasting ǌǍ minutes and a minimal re-
laxation period of ǊǍ minutes between two consecutive activations. ĉe model predictive con-
troller used the model shown in Figure ǋǍ with the parametrization derived from the calibration
experiment shown in Figure ǋǏ. ĉe feedback control setup is functional even though the long
activation duration of ǌǍ minutes introduces oscillations around the target value.

Ǒǈ



7
Discussion

Ǐ.ǉ SŊŁŁĵŇŏ

In this thesis I described the development of a closed-loop control platform for gene expression,
which is based on the HOG pathway that is exploited as a system to activate gene expression.
My ėrst step towards controlling gene expression, was to develop a control platform to drive the
activation of the HOG signaling cascade, following the initial assumption that precise activation
of the HOG cascade is a prerequisite for the HOG based control of gene expression. ĉis work
showed that real-time control of a cellular process is feasible, even though controlling Hogǉ ac-
tivation to constant target values was not feasible for prolonged times, because of the feedback
mechanisms triggered by the HOG pathway. On the other hand I was able to control the acti-
vation of Hogǉ with a target function consisting of repeated trapeze motifs. Because in this case
in between consecutive Hogǉ activations there was no osmotic input, the natural feedback re-
sponse (adaptation) caused normally by activation of the HOG pathway did not take place and
repeated activations of the HOG cascade were possible. ĉis result guided the development of
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the gene expression control platform. It showed that an amplitude modulation of Hogǉ activity
is not possible, whereas a frequency encoded Hogǉ signal seemed feasible.

Taking this result into account, I developed a gene expression control strategy, which sepa-
rated the gene expression control problem into two simpler problems, in which in the ėrst step
a Hogǉ proėle leading to the desired gene expression proėle was searched for, while in a second
step the osmolarity proėle implementing theHogǉ proėle found in the ėrst roundwas identiėed.
ĉeHogǉ proėles were constrained to be trapezemotifs with amaximal duration, thereby imple-
menting a frequency encodedHogǉ signal. Toprevent the natural feedback response of theHOG
system, another constraint ensured a minimal relaxation time between consecutive Hogǉ activa-
tions. ĉe controller was based on a model predictive control (MPC) approach, incorporating a
minimal model of the Hog pathway and of the gene expression response. Computer simulations
indicated that this approach would yield a functional gene expression controller for both ėxed
and varying targets.

Building on this result I started the implementation of a gene expression control platform in
vivo. Two problems arose during the implementation of the control strategy proposed earlier.
First, themicroĚuidic device I used for the control of theHOG cascade was not amenable for ex-
periments lasting longer than Ǌ-ǋ hours. ĉis required the use of a different microĚuidic device,
which allows for long time experiments, but has the drawback of rather slow switching dynamics.
ĉis prevented the emulation of analog control by fast switches between high and low sorbitol
concentrations, as I had used it for theHogǉ pathway control exploiting the low pass ėlter behav-
ior of the HOG cascade. For this reason I was not able to apply the proposed input strategy with
a continuous osmolarity proėle, but instead had to work with an input that is either on (media
with ǉM sorbitol) or off (normal media). ĉe second problem was that I was not able to mon-
itor the localization of Hogǉ over prolonged time periods, because the high imaging frequency
required to capture Hogǉ dynamics led to bleaching of the Ěuorescent marker tagged to Hogǉ.
Instead I developed a controller which required the gene expression output as the only measure-
ment. ĉe controller was also based on a MPC approach, but because only one variable was
observed (pSTLǉ-yECitrine Ěuorescence), I used a simpler model than for the computational
investigation. Despite the simplicity of the model, the controller was able to drive gene expres-
sion with quantitative accuracy over a time period of at least ǉǍ hours. Both time-constant and
time-varying target proėles were achieved and the controller was able to drive gene expression
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within a ǉǈ-fold range, illustrating the versatility of the approach. In addition to controlling a cell
population, the controller was also able to control gene expression in a single cell over ǉǍ hours. I
showed that controlling a single cell givesmore precision than population control, when the con-
troller reacted directly to the behavior of the controlled cell. Single cell control could for example
be important in cases where a large cell to cell heterogeneity limits the precision of population
control. Implementing a similar control system, which uses themethionine repressible promoter
instead of the HOG pathway to activate gene expression, showed that the platform is extensible
to use other gene induction systems without major modiėcations.

Ǐ.Ǌ LĽŁĽŉĵŉĽŃłň Ńĺ ŉļĹ ĵńńŇŃĵķļ

ĉemain limitation of the control platform in its current state is that it only controls the Ěuores-
cence level and not the actual protein level. ĉese two entities differ because each observation
bleaches a proportion of the Ěuorescent protein, which is thereaěer still present but cannot be
observed. ĉe most obvious option would be to model bleaching and use this to calculate back
the total protein amount which is then used for control. Since the way bleaching could be mod-
eled here is not indisputable, I decided to control only Ěuorescence levels in this ėrst platform. A
way to validate a bleaching model would be to fuse two Ěuorescent proteins with different colors
together and then to take images of the second Ěuorophore sporadically to validate the model.
Another option to circumvent the bleaching problem would be to use a gene expression readout
that does not suffer from bleaching, for example the light emiĨing enzyme luciferase. It has to be
noted though, that such an approach would lead to other problems, for example the weak signal
of lucerferases [ǉǋǐ]. A third option would be to limit bleaching, either by applying less light in
eachobservation or by using a protein inwhich the degradation rate dominates the bleaching rate.

A question is whether the control performance could be improved by improving the model.
ĉecurrentmodel does not capture the full dynamics of the system,which is not surprising, given
that a complex signaling cascade and the downstream gene expression process are modeled by a
two-dimensional ODE system. Because the state of the model has to be estimated based only on
Ěuorescence observations, it remains unclear whether a more detailed model could improve the
control performance. ĉe inability of the currentmodel to capture all observed system dynamics
is illustrated by the deviations between open-loop control experiments and the corresponding
model simulations (see Figure ǋǉ).
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Lastly, as seen in Section Ǌ.ǉ.ǋ, activation of the HOG cascade triggers a major transcriptional
response with more than ǎǈǈ induced genes, wherefore using this system to control gene expres-
sion in real life applications will have pleiotropic effects. ĉese pleiotropic effects of the Hogǉ
induced gene expression could be circumvented by using an orthogonal gene induction system
which has a less severe impact on cellular processes. One option would be the tet-on system de-
scribed in Section Ǌ.Ǌ.Ǌ, which has the advantage that it stems from bacteria and therefore has
almost no pleiotropic effects in yeast. Another option would be to use an optogenetic system, for
example the phy-GBD/pif-GAD system (see Section Ǌ.Ǌ.ǋ and Ǐ.ǌ).

Ǐ.ǋ FŊŉŊŇĹ ĸĽŇĹķŉĽŃłň

Despite the limitations mentioned above, the device I presented here offers unprecedented op-
portunities to decipher the dynamics of gene networks, because it allows for the ėrst time to ap-
ply precise time-varying perturbations to the level of a protein. Currently, most perturbations
of gene networks are static, but time-varying perturbations provide more information about the
perturbed systems [Ǌǎ, ǋǎ]. For example, the expression of a transcription factor could be con-
trolled and the expression of the gene downstream of this transcription factor could be observed.
By forcing the transcription factor to follow oscillatory expression proėles with different frequen-
cies, the dynamic capabilities of the gene network could be analyzed as it has been done for sig-
naling cascades [ǋǏ, ǋǐ].

Another possible use of the platform would be for optimal experimental design. Apgar et al.
used amodel predictive controller (MPC) to discriminate between differentmodel variants [ǊǍ].
ĉe idea was to ėx a target proėle and then use the different models together with a model pre-
dictive controller to ėnd inputs signals that when applied to the system lead to the previously
deėned target proėle. ĉe reasoning was that the model which describes the modeled process
most accurately, would generate an input proėle that when applied to the real systemwould yield
a trajectory similar to the deėned target. Apgar et al. show the applicability of this approach in
silico. With the platform I have presented here, this approach could be driven even one step fur-
ther: instead of computing the input signal before the experiment in an open-loop manner, the
model variants could instead be used to drive the closed loop control platform. ĉemodel which
thenwould yield the best control performance could be characterized as themodel describing the
underlying process with the best accuracy. One problem here, which is also present in the open
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loop approach presented by Apgar et al., is that this approach might be very sensitive to different
parametrizations of the models.

ĉe platform in its current form allows only to turn on gene expression, while no inĚuence
of the degradation rate of the controlled protein is possible. Protein degradation rates can be
inĚuenced for example by using the auxin based degradation system from plants [ǉǋǑ] in which
the plant hormone auxin induces the activity of an ubiquitin ligase, which recognizes a speciėc
amino acid sequence. ĉis would require to express this speciėc ubiquitin ligase in the cell and
to fuse a recognition sequence to the controlled protein. Another methodmakes use of a cryptic
degron¹, which is only exposed in the presence of a small ligand molecule, which then can be
used to activate protein degradation of a speciėc protein [ǉǌǈ]. Being able to induce protein
degradation would vastly improve the dynamic range of feasible target proėles.

Ǐ.ǌ RĹŀĵŉĹĸŌŃŇĿ

First successful applications of control theory to biology were the studies of biological systems
using methods from control engineering. David Angeli and Eduardo Sontag identiėed a class of
biologicalmodels that allows an elegant analysis of features like oscillatory behavior, bistability or
multistability and bifurcations using control theory methodologies. ĉey view a biological sys-
tem as an input/output (I/O) control system, inwhich an input u can be applied and one variable
is deėned as anoutput. ĉe systems they studyhave to fulėl two conditions, (i)monotonicity and
(ii)monostability. Simply speaking a system ismonotone, if all cycles in the incidence graph have
a positive sign. ĉe incidence graph represents the direct inĚuence of one species on another and
can be constructed knowing only the signs of the elements of the Jacobianmatrix. Monostability
means that for any constant input the system converges to a stable steady state. If a system in both
monotone and monostable, it does not show stable oscillatory behavior and it is possible to de-
terminewhether it is bistable in an elegantway that does not rely on numerical simulations [ǉǌǉ].
In addition, it can be possible to decompose a non-monotonic system into multiple monotone
subsystems, thereby allowing to analyze feedback loops, which are by deėnition not monotone
[ǉǌǊ]. ĉis led for example to the development of minimal gain theorems, conditions sufficient
to prevent oscillations, in MAP kinase cascades [ǉǌǋ].

¹A degron is a amino acid sequence within a protein that promotes degradation.
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Several people studied the robustness of biological systems using control approaches. Yi et al.
analyzed the adaptation feature of bacterial chemotaxis froma control perspective and concluded
that the chemotaxis system achieves robust adaptation through integral feedback control [ǉǌǌ].
El-Samad et al. studied the heat shock response in E. coli and found that the complexity of the
system is necessary to achieve features like robustness to parameter variations, noise rejection,
speed of response or the economical use of resources [ǉǌǍ], features that also engineered systems
are optimized for. Recently, Chandra et al. analyzed oscillations that occur within the glycolysis
and came to the conclusion that these oscillations are not a feature of the system, but rather a
product of a trade-off between robustness and efficiency of the glycolysis [ǉǌǎ].

Control theory has also been utilized to optimize the application of drugs against HIV [ǉǌǏ],
tuberculosis [ǉǌǐ] or diabetes [ǉǌǑ].

Recently, several frameworks have been presented that use feedback regulation to control a bi-
ological process, in a way similar to the work presented in this thesis. A framework similar to the
one I use has been published by Menolascina et al. [ǉǍǈ]. ĉey present a computer simulation
of a system controlling a synthetic gene network in yeast. Similar to my work, they assume acti-
vation of the system by adding an inducer to the cellular media using a microĚuidic device and
observation using Ěuorescent proteins. While I use a model predictive control approach, Meno-
lascina et al. use a PI controller equipped with a Smith predictor to account for the time delay of
the system. In computer simulations they were able to control a model of their system to follow
both ėxed and dynamic target proėles. Preliminary experimental results showed the feasibility of
this approach.

ToeĨcher et al. implemented a feedback control system in livemammalian cells using advanced
optogenetic techniques, which is able to control the localization of a signaling protein for both
constant and time-varying target proėles [ǌǈ]. ĉey used the optogenetic phy-PIF module (see
Section Ǌ.Ǌ.ǋ) which allows to control the association of the two proteins phy and PIF by apply-
ing red or infrared light. Red light activates the binding between the two proteins by inducing
a conformational change of phy, whereas infrared light deactivates the binding. By using a digi-
tal mirror device they were able to apply light pulses to sub-cellular regions, thereby stimulating
each cell individually. ĉey ėxed phy to the cellular membrane and labeled PIF with a blue Ěu-
orescent protein (BFP), so that they were able to quantify the association state of phy and PIF,
by monitoring the membrane localization of PIF-BFP. Using a PI controller, they were able to
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control the membrane association of PIF for both constant and time-varying target proėles in
single cells. ĉe parameters of the PI controller were tuned using a mathematical model of the
phy-PIF system and the authors showed that for high gains the control system shows oscillations.
ĉemathematical model has been tuned by calibration experiments whichmonitored the steady
state response to various constant input signals. With their approach, the authors were able to
reduce the cell-to-cell variability of the phy-PIF response, by applying different inputs to each
cell.

By fusing phy and PIF to effector proteins of which the activity can be controlled by their lo-
calization, this system allows to control downstream processes. ĉe authors used this to con-
trol the activity of the signaling protein phosphoinositide-ǋ kinase (PIǋK), which produces ǋ′-
phosphoinositides (PIP ) that are involved in controlling cellular functions such as growth, pro-
liferation or differentiation [ǉǍǉ]. ĉey fused aPIǋKbinding domain toPIF,which allowed them
to recruit PIǋK to the plasma membrane by activation of the phy-PIF module. Since the sub-
strates of PIǋK are located within the plasma membrane they were able to control the activity of
PIǋK by controlling its localization. Using this system they were able to clamp the concentration
of the product of PIǋK (PIP ).

ĉe approach of ToeĨcher et al. allows the precise control of the localization of a protein,
which permits the activation of signaling proteins that can be stimulated by their localization.
ĉeir control systems reacts very fast (within several seconds), which allows the control of fast
processes. On the other hand, the approach is less suited for long time experiments, because the
high imaging frequency required would induce bleaching of the Ěuorescent proteins necessary to
monitor the responseof the system. Aproblem that is not discussed in theirmanuscript is how the
cellular contours are detected in an image. Because their experiments lasted typically less than a
minute such that cellularmovements can be neglected, amanual detectionwhich requires human
interaction seems likely. Another limitation of their approach is that it requires advanced light ap-
plication techniques which renders it difficult for other people to use their system. Despite these
limitations, the control platform of ToeĨcher et al. is an ideal tool to investigate the dynamics of
signaling processes, because it allows the precise and fast activation of signaling cascades that can
be activated by the localization of a protein.

ĉe most closely related work has been published by Milias-Argeitis et al., who also used op-
togenetics to control the expression of a yeast gene to a constant target value over several hours
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in a population of cells [ǌǉ]. ĉey use the phy-GBD/PIF-GAD gene activation system (see Sec-
tion Ǌ.Ǌ.ǋ) in which the association of phy and PIF controls the association of a GALǌ binding
domain and a GALǌ activation domain [ǉǏ]. ĉis allows to activate the expression of a yellow
Ěuorescent protein (YFP) using red light and inactivate its expression using infrared light. ĉe
input was applied using a custom-built light pulse delivery system which can be controlled via a
computer. Measurementswere taken every ǋǈminutes using a Ěow cytometer. ĉis step required
manual interaction to deliver an aliquot to the Ěow cytometer. ĉe authors developed a switched
linearODEmodel consisting of ǌ states and Ǎ parameters tomodel their system and ėĨed the pa-
rameters using calibration experiments. Similar to my work, they use a model predictive control
strategy, which tries to minimize the deviation between the model output and a target value and
then applies the best control strategy identiėed in this simulation. ĉe controller was allowed to
apply an input pulse (either ON, OFF or do nothing) at discrete times every ǉǍ minutes, while
the prediction horizon was Ǒǈ minutes. ĉis allowed them simulate all possible input strategies
in between a measurement and the next control input, without using an optimization algorithm.
AKalman ėlter was used to estimate the state of the system and the authors tuned it using in silico
simulations. ĉis setup allows the authors to control YFP Ěuorescence to a ėxed target value for
about Ǐ hours.

ĉe authors control gene expression of a large population of cells in liquidmedia, so theirmain
applicationdomains are biotechnological chemostat cultures. On theother hand the volume they
use is very small (ǉǊǈ μL) and scaling up laboratory experiments to industry scale has proven
difficult [ǉǍǊ]. Currently, the approach of Milias-Argeitis et al. requires manual interaction for
each measurement, which limits long time experiments and renders all control experiments te-
dious tasks. ĉe control approach would in principle be suited for control experiments with
time-varying target proėles, but the authors showonly experimental results with constant targets.
ĉe reason for this is probably that time-varying experiments would require control experiments
longer than Ǐ hours because of the slow gene expression dynamics, which is not feasible using a
manual interaction for eachmeasurement. MeasuringĚuorescenceusing aĚowcytometer has the
advantages that noise cancels out because of the large number of cells that can be observed and
that Ěuorescence distributions are obtained. However this approach does not allow for single-cell
tracking, whichwould be useful to analyze and control gene expression in single cells. Such single
cell data would for example allow to study the evolution of gene expression variability in a single
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cell (how fast do gene expression changes occur at the single cell level).

Ǐ.Ǎ FĽłĵŀ ŇĹŁĵŇĿň

Feedback control of biological processes in vivo has just emerged recently as I have detailed in
the previous section. On the other hand methods from control theory play an important role in
understanding biological systems, because they oěen resemble a feedback control systems (see
Section ǉ.ǉ.ǉ). Several studies highlighted the importance feedback control to understand bio-
logical systems [ǉǍǋ–ǉǍǍ]. It is likely that in vivo feedback control will play a critical role in the
application of precise perturbations to biological systems, because the ability of applying precise
perturbations is a prerequisite to decipher the functioning of complex biological systems. Ob-
taining quantitative models with current experimentation techniques is extremely difficult. ĉis
is illustrated by the work of Cantone et al., who implemented a synthetic gene network in yeast
cells and then constructed a mathematical model for this network [ǉǍǎ]. Despite the use of well
characterized genes, the production of high quality quantitative data and the use of state of the
art modeling and parameter search methods, construction of a quantitative model has been ex-
tremely challenging and the authors claim their model to be “semiquantitative”, meaning that the
model fails to capture all system dynamics in a quantitative manner. Observing the behavior of
this network in more diverse situations might help to model it.

Time-varying protein perturbations could also give new insights into cellular processes that
depend on oscillatory protein levels. Charvin et al. were able to drive cell cycle progression in
yeast cells, by controlling the expression of a cyclin [ǉǊǐ]. Coudreuse et al. recently constructed
a minimal cell cycle network in ėssion yeast, which is driven by the oscillation of a single cyclin-
dependent protein kinase [ǉǍǏ]. Controlling precisely the frequency and amplitude of proteins
involved in the cell cycle will open new ways to investigate the functioning this complex system.

In addition to controlling gene expression, the platform I presented here can be used for real-
time experiments, in which the stimulus applied to the cells depends on a readout of the cellu-
lar behavior. ĉis would require only slight modiėcations to the control code I have developed.
An example would be on-line parameter learning, where parameter identiėcation and the corre-
sponding biological experiments would be coupled. ĉe beneėt here would be that inputs could
be selected, such that they maximize the information gained about parameters that are not well
deėned in the current parametrization of the model. ĉis approach could also be integrated in
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the model predictive control approach I have presented, such that the model used for control is
constantly updated based on the experimental results.

It has to be noted, that the work I presented here should be seen as a proof-of-concept imple-
mentation of a feedback control system for gene expression. But even though signiėcant work
remains to actually apply feedback control systems for the generation of precise perturbations of
biological systems, this approach might have formidable implications in the future. ĉe recent
success of systems biology illustrates the importance of investigating not only the structure and
function, but also the dynamics of biological systems. In this context itmight verywell be the case
that feedback control becomes a tool as widely used as the polymerase chain reaction (PCR) is
used nowadays in genomic research. Feedback control systems could be applied to investigate the
input-output behavior of biological systems and real-time experimental setups would in addition
allow to do this is a semiautomatic fashion.
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A
Description of the control soěware

In the following, I will give a brief overview over the control soěware I developed in the course
of the gene expression control project. ĉe soěware is publicly available online¹ and could be
re-used for other closed loop control purposes. ĉe automated cell-tracker might be of use for
many time-lapse microscopy applications, wherefore I will describe it separately. All soěware is
wriĨen inMATLAB.

In addition I have developed amicro-manager driver for the EXFOX-Cite ǉǊǈ PC Ěuorescent
lamp, because at the time when I started this project no such driver was available. ĉe driver has
been integrated into the main micro-manager distribution².

A.ǉ CŃłŉŇŃŀ ňŃĺŉŌĵŇĹ

Here, I will describe the functions and classes that make up the gene expression control soěware.

class Model
ĉemodel class contains the ODE description of the controlled system. It provides methods to
integrate the model over time.
Functions:

¹hĨp://www.msc.univ-paris-diderot.fr/~jannis/control_code
²hĨtp://www.micro-manager.org
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• integrate( x_0, on_times, on_durations, time_points )
Returns: [time_interval,x]
Integrates themodel over time. Inputs are the initial conditions (x_0), a vector of times at
which the valve is switched to theon-state (on_times), a vectorof on-durations (on_durations)
and a vector specifying the time points for numerical simulation (time_points). ĉe
function returns the time interval vector as well as the solution at each time point (x).

class StateEstimator
ĉis class implements an extended Kalman ėlter (see Section Ǌ.ǋ.ǋ).
Functions:

• StateEstimator( model, x_0, H )
Constructor for the class. Inputs are an instance of the Model class, the initial conditions
(x_0) and the observation matrix H.

• estimateState( observation, on_times, on_durations, current_time,
time_step)
Returns: x_current
Estimates the current state of themodel basedonobservations. Inputs are theobservations
(observation), the past osmotic input (on_times and on_durations), the current
time and the time elapsed since the last estimation (time_step).

class Micromanager
Class implementing the interface to themicroscope via the open source soěwareMicroManager.
Functions:

• getImage( channel )
Returns: img
Function to take an image (at the moment imaging conditions are hard coded). ĉe chan-
nel can be speciėed (e.g. “trans” or “yfp”). ĉe function returns the image as a matrix of
gray values (img).

class Valve
Class implementing the interface to the microĚuidic valve.
Functions:

• switchOn()
Switches the valve to the on-state.

• switchOff()
Switches the valve to the off-state.

ǉǊǈ
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• timedSwitch( time_start, on_times, on_durations ) Function to switch
the valve in the future. ĉe inputs are the time of the start of the experimenttime_start,
the vector of times at which the valve is to be switched on (on_times) and a vector spec-
ifying the on-durations (on_durations).

function getOsm( on_times, on_durations, time_interval )
Function giving the osmolarity proėle as it is felt by the cells. ĉis proėle is different from the
simple state of the valve because of the dead volume in the tubes and because of mixing in the
tubes. ĉe proėle is computed by a linear interpolation of a calibrationmeasurement (see Figure
ǉǑB).

function find_osm_profile( x_0, time_start, reference, model, on_times,
on_durations )
Returns: [new_on_times, new_on_durations]
Function which ėnds the best future osmolarities to apply in order tomake the system follow the
target proėle. Inputs are the current system state (x_0), the current time (time_start), the ref-
erence proėle (reference), an instance of the model and the past osmotic input (on_times
and on_durations).

function evaluate_osm_profile( osmotic_profile, x_0, time_start,
time_start_model_sim, reference, model, last_shock_end )
Returns: fitness
Function to evaluate a possible osmotic proėle. Inputs are the osmotic proėle, the current state
of the model (x_0), the current time (time_start), the time at which the model simulation is
to be started (time_start_model_sim), the target proėle (reference), the model instance
(model) and the time of the end of the last shock (last_shock_end). ĉe function returns a
ėtness value.

ĉe integration of these pieces is done in a script called do_mpc.m.

A.Ǌ CĹŀŀ ŉŇĵķĿĹŇ

ĉe cell-segmentation, tracking and quantiėcation of Ěuorescent markers is done in the class
HoughTracker. ĉis class may be used independently of the rest of the control soěware via
the script do_tracking.m.

class HoughTracker
Functions:

ǉǊǉ
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• HoughTracker( name )
Constructor of the class. Output images are saved in the folder name_tracker.

• addTimepoint( img_trans, img_expression, img_hog, img_nucleus )
Returns: sorted_fluorescence
Function thatdoes the segmentationand tracking. Inputs are the trans-image(img_trans),
the Ěuorescent image of the gene expression marker (img_expression), the image of
the Ěuorescence label of Hogǉ (img_hog) and a Ěuorescent image of a nuclear marker
(img_nucleus). All inputs apart from the trans-image are optional and can be set to zero.
ĉe function does the tracking and returns a sorted array of the expression values for each
detected cell. If a cell has been lost the corresponding index in sorted_fluorescence
is set to NaN.
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To decipher the dynamical functioning of cellular processes, the method of choice is to observe the
time response of cells subjected to well controlled perturbations in time and amplitude. Efficient
methods, based on molecular biology, are available to monitor quantitatively and dynamically many
cellular processes. In contrast, it is still a challenge to perturb cellular processes - such as gene
expression - in a precise and controlled manner. Here, we propose a first step towards in vivo control
of gene expression: in real-time, we dynamically control the activity of a yeast signaling cascade
thanks to an experimental platform combining a micro-fluidic device, an epi-fluorescence microscope
and software implementing control approaches. We experimentally demonstrate the feasibility of this
approach, and we investigate computationally some possible improvements of our control strategy
using a model of the yeast osmo-adaptation response fitted to our data.

1. Introduction

To understand biology at the system level, one has to study both the structure and the
dynamics of cellular processes [18,19,32]. On the one hand, genetic analyses are required

to analyze the structure of signaling pathways and genetic networks. On the other hand,
to access to the dynamical functioning of cellular processes, one has to observe the time

response of cells to well controlled perturbations. Hence, the information level provided by
experiments crucially depends on our capacity to observe and perturb biological systems at the

cellular level. Efficient experimental tools have been developed to monitor both quantitatively
and dynamically many cellular processes. Gene expression can be measured through micro-

arrays or quantitative RT-PCR and conveniently observed at the single cell level through the
combination of fluorescent reporter proteins and FACS techniques or microscopy [19,21,26]. In

contrast, it is still a challenge to perturb cellular processes in a precise and controlled manner. A
commonly used strategy resides on using inducible promoters to modulate the expression of a

gene of interest by the addition of a diffusible molecule in the external cellular environment [12,
16,28]. However, even if the activity of the inducible promoter can be modulated quantitatively,

there is no guarantee that the target gene will reach a desired constant expression level over a

long period of time. Indeed, variations may arise because of modifications of the physiological
state of the cell due to internal feedback loops and cellular adaptation. The expression of a

transcription factor regulating itself is even more problematic. Moreover, both theoretical [1,
15] and recent experimental [14,24] results demonstrate the need for elaborate, time-varying



perturbations to decipher quantitatively certain dynamics features of cellular responses. This
notably includes the numerous biological processes in which the timing of gene expression

plays a central role such as the regulation of the cell cycle. To summarize, existing solutions
for the artificial control of gene expression are dissatisfying on two counts since, (i) expressing

a gene of interest in a well-controlled, sustained way cannot be conveniently realized at the
present time, and (ii) the investigation of certain dynamical properties necessitates dynamical,

time-varying perturbations of gene expression for which no solution is currently available.
Here, we propose a first step towards in vivo control of gene expression. We have imple-

mented an experimental platform for the in vivo control of a signaling pathway in Saccha-

romyces cerevisiae. We chose to control the activity of the HOG cascade which is activated in
response to hyper-osmotic perturbations and promotes the transcription of osmo-adaptative

response genes. Given a desired temporal profile, the activity of the signaling cascade is moni-
tored in real time and deviations from the desired values are dynamically corrected by varying

the osmolarity of the cellular environment (Fig. 1). This can be achieved thanks to a ded-
icated micro-fluidic device. This experimental platform is driven by software, that notably

implements control algorithms, responsible for computing how the cellular environment (os-
molarity) should be modified to correct the observed deviations from target values.

Input

Output
(protein X‐FP 
concentration)

(osmolarity)

Input

Output
(protein X‐FP
concentration)

(osmolarity)

Time [min]

Time [min]

200100 300

200100

0
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Fig. 1: The control problem. (a) Schematic Input/Output description of the cell. (b) Schematic
representation of a desired output (blue), an applied input (orange) and the obtained output (blue
crosses), for two different situations. In the first case (top), the goal is to dynamically maintain the
concentration of a target protein X, fused to a fluorescent protein (FP), at a constant level. In the
second case (bottom), the goal is to create a complex perturbation signal by varying the concentration
of the protein X with time.

The work presented here differs significantly from previous applications of control the-
ory in systems and synthetic biology contexts. So far, control theory contributions consisted

essentially to shed a new light on biological phenomena, notably by suggesting underlying or-

ganization principles in biology [8,9]. An illustrative example is the use of the notion of integral
feedback control to explain the robust perfect adaptation observed in bacterial chemotaxis [34].

Other insightful examples are given in a recent textbook [15]. Control theory has also been
used in optimal experimental design applications [1,23]. But quite surprizingly, only a few



(theoretical) studies focused on the actual control on a biomolecular process, e.g. [2,4,7,17].

Moreover, to the best of our knowledge, control theory has not yet been applied in vivo for
the actual feedback control of biological cellular processes at the single cell level.

The paper is organized as follows. In section 2, we present in details the proposed platform
for real-time control of the HOG signaling cascade activity and gene expression. In Section 3,

we present preliminary experimental results obtained when controlling the nuclear localization
of the Hog1 protein. This represents an essential first step towards controlling gene expression.

In Section 4, we discuss possible improvements of our control approach using a simple model

of the osmotic stress response. Conclusions are provided in the last section.

2. A platform for real-time control of gene expression

2.1. An integrated real-time control platform

Central to control theory is the notion of feedback control [30]. The idea is to compute the

inputs to apply at the next time instant in function of outputs previously obtained. This
way, knowledge of past errors is used to improve the control. In comparison to open loop

control where the control strategy is computed beforehand, closed loop control approaches are
generally less sensitive to model uncertainties and can compensate for external disturbances.

These two features are highly desirable for any biological application. However, performing
a control in real-time necessitates a tight integration between measurement device, control

software and actuator.
As described in Figure 2, the HOG pathway activity can be monitored at the single cell

level using time lapse fluorescent microscopy. The cellular environment can be controlled

using the micro-fluidic device developed by Hersen and colleagues [14]. Not only this device
allows a fast and well-controlled change of the cellular environment, but also, it guarantees

that with the exception of the input signal the cell environment is otherwise held constant.
We implemented algorithms for image analysis, state estimation and input computation in a

Matlab program that communicates with and drives the microscope via MicroManager [31]
and the micro-fluidic pressure controller.

2.2. Using HOG signaling cascade

To link external environmental changes to gene expression, we use a natural signaling pathway:
the Hyper Osmolar Glycerol (HOG) pathway in the yeast Saccharomyces cerevisiae. This MAP

kinase pathway is used to sense osmolar pressure changes in the environment and to trigger
osmotic stress responses that maintain water homeostasis [29]. More precisely, two osmo-sensor

proteins (Sln1 and Sho1) transduce the signal to the Hog1 protein via a phosphorylation
cascade. Once phosphorylated, Hog1 promotes the osmo-adaptative response in at least three

different ways. Firstly, Hog1 translocates into the nucleus and alters, directly or indirectly,

the expression of a large number of genes [27]. Secondly, Hog1 has also a cytoplasmic activity
since it regulates negatively glycerol export by inhibiting the activity of the Fps1 glycerol

channel [3]. Thirdly, Hog1 activates glycerol producing enzymes, notably Gpd1 [33]. Hence,
the osmo-adaptative response involves at least three natural feedback loops.
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Fig. 2: The integrated control platform. The main elements of the feedback loop are (i) a micro-
fluidic device allowing a rapid control of the cellular environment, (ii) a microscope for phase contrast
and fluorescence measurements, (iii) yeast cells with Hog1, a nuclear marker (Htb2) and the protein
of interest (X) fused to compatible fluorescent markers, and (iv) Matlab software for image analysis
and controller implementation.

Our motivation for using this pathway is triple. Firstly, it has been extensively experimen-

tally studied and quantitative models are available [6,14,20,22,24,25,35]. Second, the output of
the signal transduction pathway can be experimentally quantified. Indeed, if Hog1 is fused to

a fluorescent protein, its nuclear localization can be quantified and provides a measure of the
Hog1 activity [10]. Thirdly, it has been experimentally shown that for fast osmolarity changes,

the pathway integrates the signal: the transduction pathway acts as a low-pass filter with a
bandwidth approximatively equal to 5 × 10−3 Hz [14]. This property allows us to emulate an

analog control by rapidly switching (frequencies greater than 0.1 Hz) between two media: the

normal growth medium and a sorbitol enriched (∼ 1M) medium. For example, a two minute
osmotic stress corresponding to a 0.4M sorbitol intensity is obtained by flowing cells 12 times

with normal medium during 6 s. and with sorbitol-rich medium during 4 s.
In this paper, we use a yeast strain with Hog1 fused to GFP and the nuclear protein

Htb2 fused to mCherry [14]. The latter is used to conveniently localize the nuclear region. We
define the relative Hog1 nuclear localization h(t) as the ratio of the mean fluorescence pixel

intensities of Hog1-GFP in the nucleus and in the cytoplasm.

h(t) =
〈Pixel intensity〉nuc

〈Pixel intensity〉cyto

The normalized Hog1 nuclear localization hn(t) is then simply hn(t) = h(t)/h(t0). These defini-
tions are motivated by the fact that this gives measures that are relatively robust with respect

to fluorescent protein photo-bleaching and cell-to-cell variations.

3. Controlling transcription factor nuclear localization using a simple

control approach

In this section, we present preliminary results obtained on controlling the Hog1 nuclear local-
ization. The control of Hog1 nuclear activity is a prerequisite for utilizing the Hog pathway



Fig. 3: Schematic representation of the HOG pathway with natural and engineered feedbacks. Solid
and dashed arrows indicate direct and indirect effects, respectively. For a detailed description, see
the main text. FP1 and FP2 in the figure denote two different fluorescent proteins.

to control gene expression. As a matter of fact, controlling the duration of activated Hog1

residence in the nucleus will lead to bursts of expression for the genes which are placed under
Hog1 dependent promoter. There are different options how to encode a certain gene expression

profile. We could either work with a constantly high signal and adjust the amount of Hog1 in
the nucleus (amplitude modulation), or we could successively activate the Hog pathway for

a short duration and control the frequency of these activations (frequency modulation). To
test these two alternative strategies, we consider two problems: maintaining a given constant

level of Hog1 nuclear localization over a long time period, or obtaining pulses of Hog1 nuclear
localization in a repeated manner. These results have been obtained using the simplest control

approach: a PID controller.

3.1. PID control

A proportional-integral-derivative (PID) controller is a generic closed-loop control algorithm,

generic meaning that is does not require any structural knowledge about the controlled sys-
tem [30]. Due to its simplicity this type of control is very often applied in engineering appli-

cations. A PID controller measures the deviations (“errors”) of measured states from target
states, and uses this information to compute the control. The applied control u at time t is

the weighted sum of the error, e(t), its derivative and the integral of past errors e(τ), τ ∈ [0, t]:

u(t) = kp · e(t) + ki ·

∫ t

0

e(τ)dτ + kd ·
d

dt
e(t)

where kp, ki and kd are the proportional, integral and derivative gains.

In our case the error e(t) is the difference between the measured normalized Hog1 nuclear

localization hn(t) and its reference value at the corresponding time point. Because we consider
tracking problems, only the recent past errors are relevant. Therefore, we integrate the error

only on the interval [t−∆, t], where ∆ is approximatively 2 minutes. We tuned the controller
gains manually using a trial and error approach. The derivative term, and to a lesser extend,



the proportional term are responsible for implementing a fast system response to target value
changes. However large values for these parameters favor oscillations and loss of stability. In

practice, we found that setting the derivative gain to zero and using values for kp and ki

close to 2 and 1.5 leads to a good compromise between response time and stability in our

experimental setting.

3.2. Experimental results

We designed two control experiments to test the possible strategies discussed above: using

amplitude or frequency encoding. The first type of experiment is to try to maintain the
system output at a constant target level (Fig 4 left). Quantitatively, the relative Hog1 nuclear

localization should remain 20% higher than its nominal value in unstressed cells. The second
type of experiment is to try to obtain repeatedly trapezoidal motifs. The amplitude of output

variations also corresponds to a 20% increase above nominal value (Fig 4 right).
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Fig. 4: Experimental results for the control of Hog1 nuclear localization. Left: Controlling the am-
plitude of Hog1 localization does only work for short durations due to internal feedback and cellular
adaptation to sustained hyper osmotic conditions. Right: With a frequency encoded signal, the cell
is able to reset between successive shocks and follows the reference values for the whole experiment.

Our experimental results clearly show that the control is effective in yeast cells. Consider for

example the step experiment at time 2, when the target value changes. Following this change,
the controller applies an osmotic stress, resulting after a 1-2 minute delay in an increase in

the Hog1 nuclear localization. Then the system overshoots and the controller decreases the
osmolarity of the environment. Oscillations ensue around a level below the target value during

approximatively 15 minutes, during which increasing inputs are applied. Finally, even the
maximal input is not sufficient to prevent the system from drifting away towards its nominal

level.

The interpretation of these control results is simple. Because of internal natural feedbacks,
the cells adapt (notably produce glycerol) and become insensitive to high osmolarity envi-

ronments. Therefore, unless all internal feedback loops are inactivated, the amplitude-based
control strategy seems not feasible. The inability of the controller to maintain the output at the



target value in osmo-sensitive cells can be explained by the initiation of an osmo-adaptative
response causing cells to drift away from the target value, together with the use of a rather

narrow integration window in our PID controller.
Concerning the repeated motif experiment, it is fair to say that despite time lags and a

relatively noisy behavior, the controller succeeds in producing the desired time varying output
(Fig 4 right). As it appears on the plots, the 6 minute time separation between the 8 minute

long motifs seem sufficient to fully reset the system to its normal, osmo-sensitive state. Based
on these experimental results, the frequency encoding strategy for gene expression seems

promising. However, before dealing with the actual control of gene expression, improvements

in our control approach are needed. The capacity of the controller to predict rather than just
to react -this would help dealing with the lag problem-, and the capacity to filter noise out

-this would make the control more robust- are two features of significant interest.

4. Design of an improved control approach

The major advantage of the PID controller is that it does not rely on a model of the system.

This makes it particularly easy to deploy. However, performances achieved using model-based
control approaches are generally superior. In this section, we use the simple model proposed

by Muzzey and colleagues [25], fitted to our data, to compare performances obtained with the

PID controller and a model based control approach.

4.1. Development of a simple linear model

Numerous models have been developed for the osmotic stress response [6,14,20,22,24,25,35].

Because of its capacity to capture essential aspects of the HOG pathway, including notably the
cell adaptation, and of its mathematical simplicity, we reuse the three variables linear model

developed by Muzzey and colleagues [25]. In short, the state of the system is described by three
variables, s1, s2, and s3, corresponding to the nuclear Hog1 enrichment, its time integral, and

glycerol relative concentration, respectively, and one input, u, corresponding to the external

osmolarity. Since the osmo-stresses studied in [25] are caused by a different osmolyte (salt
versus sorbitol), we introduce a factor σ to rescale the input u, if needed.

ṡ1 = kh (σ u − s3) − γh s1 (1)

ṡ2 = αd s1 (2)

ṡ3 = s2 + αi (σ u − s3) − γg s3 (3)

In the above model, σ u−s3 corresponds to the net osmolarity effectively sensed by the
cell. In hyper-osmotic conditions, the production of intracellular glycerol (s3) and the Hog1

nuclear localization (s1) are increased. The increased Hog1 nuclear localization increases s2

and hence s3. Therefore one distinguishes a direct and an indirect effect of hyper-osmotic

stress on glycerol accumulation [25].

To fit the model parameters to our system we perform two types of experiments in which
cells are exposed to hyper-osmotic stresses differing either in magnitude or duration. The first

set of experiments is used primarily to estimate the relation between osmotic stress and Hog1
localization, whereas the second set of experiments is used primarily to investigate the cell



dynamical adaptation to osmotic stress. One should note that we experimentally measure the
normalized Hog1 nuclear localization hn(t), whereas the variable s1(t) in the Muzzey model

corresponds to the Hog1 nuclear enrichment. However, it holds that hn(t) = s1(t) + 1 [25]. In
the sequel, to allow for comparison with the experimental results of Section 3, we present all

our results -experimental and computational- using hn(t).
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Fig. 5: Cell response to different hyper-osmotic stresses. Left: Stresses of different intensities. Cyan,
red, and black plots correspond to a 0.4, 0.6, or 0.8M stress applied during 2 minutes. Right: Stresses
of different durations. Red, green and blue plots correspond to 0.6M stress applied during 2, 4, or 6
minutes. Dashed and solid lines represent experimental data and model predictions, respectively.

To find parameter values for our model, we use the state-of-the-art non-linear optimiza-

tion tool CMAES implementing a covariance matrix adaptation evolution strategy [13]. The
objective function to minimize is the sum of a mean square error term, where the error is

the difference between measured and predicted values for s1, and a penalty term enforcing
the positiveness of parameters and initial conditions. Parameter estimates are then manually

fine-tuned (see Table 1).

kh γh γg αh αg σ

1.984 0.9225 0.5950 0.1612 0.0106 0.2

Table 1: Parameter values fitted to the experimental data shown in Fig. 5. All parameter units are
min−1, excepted for the dimensionless parameter σ.

As can be seen from the plots shown in Fig. 5, the model is able to capture qualitatively,
and up to some degree, quantitatively, the behavior of yeast cells subjected to hyper-osmotic

stresses. This is commendable given the extreme simplicity of the model.

4.2. Comparison of different control approaches

Equipped with a model of our system, we can computationally simulate the system response

and compare various control approaches. Given the time-consuming aspect of experiments,
working on simulated but realistic data allows us to rapidly test alternative control approaches.

When computationally testing a model-based control approach, one uses the same model in
the simulator and in the model based controller. That is, the model based controller knows



perfectly the system dynamics. To make fair comparisons, we assume that only the output
(and not the full state) is visible by the controller and we add (Gaussian) noise to the system

output.
We present here a model predictive control (MPC) approach. The objective of MPC is

to minimize the difference between the simulated and the target outputs by using a receding
horizon strategy: given an estimate of the current state of the system, a control strategy to be

applied during a short time horizon is searched for, and applied for a short period of time. Then,
the approach is applied again, with the estimation of the new state, and the computation of a

control strategy for a new short time horizon. This receding horizon strategy yields an effective

feedback control [11]. Because MPC applies to linear and nonlinear systems, this approach can
easily be extended to deal with future improved models. An other motivation for using MPC

rather than the conventional control approach for linear system output tracking, based on a
linear quadratic gaussian controller [30], is that simple non-linear constraints (e.g. bounded

input) can easily be integrated in this framework.
For our application, we implement an MPC approach using Kalman filtering and a simple

search strategy. The use of a Kalman filter is a standard approach to estimate the full state
of a linear system based on (noisy) observations [30]. Then, at time t, we search for three

input values, u1, u2, and u3, that when applied on the time intervals [t, t + 1], ]t + 1, t + 2], and
]t+2, t+3], respectively, minimize the squared error, again defined as the distance between the

target and the simulated outputs, on the time interval [t, t+3]. u1 is applied on [t, t+1] and the
procedure is restarted at time t + 1. At each iteration, we use CMAES, a global optimization,

tool to search for the three input osmolarities u1, u2, and u3. Naturally, in our setting, the
input (osmolarity) is necessarily positive and bounded. Therefore, we limit the search to the

interval of feasible osmolarities. The computational effort remains limited, since less than one

second is needed for each iteration. For comparison, the timestep duration of the control loop
in our experiments is 20 s. So using MPC does not challenges the real-time requirement.

We also consider here the PID controller presented in Section 3, but applied on simulated
data as explained in this section. All these computational procedures have been implemented

in Matlab.
The results obtained with the two control strategies and the for two different control

problems are shown in Figure 6. Regarding the difficulty to maintain pathway activity over
a prolonged period and the feasibility of creating repeated short time activity patterns, the

results obtained with both control approaches are fully consistent with our experimental find-
ings. The comparison of the results obtained with the PID controller on the experimental

(Fig 4) and simulated data (Fig 6) shows that the PID performs better in the second case.
This might be explained by a higher complexity of cellular variability (ie the “noise” is not just

plain Gaussian). As expected, the lag and incomplete drift compensation are also observed
on simulated data, albeit attenuated. In contrast, the model predictive results show neither.

This corroborates the fact that they originate -at least partly- from the reactive rather than

predictive nature of the PID controller. Moreover, the control is also much more regular in
the MPC experiments. Very likely, this comes from the use of Kalman filtering. One should

note that this is not due to an improper parametrization of the PID. Indeed the relatively
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Fig. 6: Comparison of PID (left) and MPC (right) control strategies for two different control problems
and on simulated data. Norm. Hog1 nuc. loc. stands for normalized Hog1 nuclear localization.

high proportional gain that causes large input changes is needed to ensure a fast response.

To summarize, the model predictive control approach is superior on all counts to the
PID controller, at the cost of a very limited computational overhead. However, one should

stress that the quality of a model based controller ultimately depends on the quality of the
model of the system. So to effectively apply MPC on yeast cells, significant modeling work

might be needed. But then one will have the effective proof that the main features of the
osmo-adaptative response are captured in sufficient details.

5. Discussion

We presented an integrated experimental platform and demonstrated the feasibility of con-

trolling the nuclear localization of the protein Hog1. Stated differently, we have shown how to
create a dynamically controlled inducible promoter. As a matter of fact, it should be possible

to place any gene under the control of a Hog1-dependent promoter and then to force its ex-
pression by controlling Hog1 nuclear localization. Consequently, this contribution describes a

first, crucial step towards real-time control of gene expression.
Using the HOG pathway has several advantages, the most important ones being its quick

activation and de-activation which are crucial to ensure efficient dynamics of the control loop,
and the established correlation between nuclear localization and activity. It is to be noted

though, that contrarily to known inducible promoters such as the Tet system, activating
the HOG pathway also affects the cell physiological state, since many genes are transcribed

to ensure proper cellular response to an hyper osmotic environment. For real applications,

one should achieve a clear separation between controlling gene expression dynamically and
altering the physiological state. This might require engineering the HOG cascade, or using

other alternative signaling pathways with similar dynamics and nuclear translocation.
Interestingly, our results suggest that for our application, it is preferable to use frequency



encoding to control gene expression. Indeed, because of fast, non-genetic adaptation feedbacks,
the output of the signaling cascade can not be held constant over a prolonged period. A

Frequency encoding strategy is widely used by neural networks which computing activity
relies on action potential pulses. Although it is generally assumed that gene regulation is

naturally controlled by amplitude modulation, a recent study by Elowitz’s team showed that
the expression of some genes in yeast are regulated by the frequency of expression bursts led by

the transcription factor Crz1 [5]. The authors proposed that the functional role of frequency
modulation is to ease the coordination of the expression of multiple target genes. Based on

our results, one can propose an alternative role of regulation by frequency modulation: it

allows for both a rapid non-genetic response and a slower transcriptional response leading to
a complete adaptation to a given stress.

In a future work, we will use a model-based control approach to improve our results on
Hog1 nuclear localization. Moreover, we will progress towards our main goal, that is, gene

expression control, by studying a candidate gene fused to a fluorescent tag under the direct
control of Hog1. The control platform will be adapted to read as outputs both the localization

of Hog1 and the actual expression level of the gene of interest.
We anticipate that this platform to tune in real-time the level of expression of a gene

of interest will be a useful tool for the biologist to better understand living processes in
single cells. Quoting Feynman saying ‘what I cannot built, I cannot understand’, synthetic

biologists propose that building systems helps to better understand them. Here, we propose
that controlling them is an effective way to assess our understanding: what I cannot control,

I have not understood.
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7. M. Chaves and J.-L. Gouzé. Exact control of genetic networks in a qualitative framework: the bistable
switch example. Technical Report RR-7359, INRIA Sophia-Antipolis, 2010.

8. M.E. Csete and J.C. Doyle. Reverse engineering of biological complexity. Science, 295(5560):1664–1669,
2002.

9. H. El-Samad, H. Kurata, J.C. Doyle, C.A. Gross, and M. Khammash. Surviving heat shock: Control
strategies for robustness and performance. Proceedings of the National Academy of Sciences of the USA,
102(8):2736–2741, 2005.

10. P. Ferrigno, F. Posas, D. Koepp, H. Saito, and P.A. Silver. Regulated nucleo/cytoplasmic exchange of



HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO Journal, 17(19):5606–5614,
1998.
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Abstract: One major goal of systems biology is to understand the dynamical functioning of
biological systems at the cellular level. A common approach to investigate the dynamics of
a system is to observe its response to perturbations. To improve our capacity to perturb
cellular processes via the expression of a given protein with a chosen temporal expression
profile, we develop an experimental platform for the real time control of gene expression. In
short, this platform allows for applying short osmotic stresses to yeast cells, that trigger the
expression of a target gene via the activation of the HOG signal transduction pathway, and for
observing in real time the cellular response. In Uhlendorf et al. (PSB’11), we describe preliminary
experimental results on the control of the signal transduction pathway obtained using a simple
proportional-integral controller. However, the control of the full system, including the much
slower transcription and translation processes, necessitates more elaborate control methods.
In this paper, we propose a model based control strategy tailored to the specificities of the
biological system, notably to its perfect adaptation to osmotic stress. The practical feasibility
and the robustness of the proposed approach with respect to gene expression noise is tested in
silico using a simple, switched linear model of the osmostress response in yeast.

Keywords: Kinetic modeling and control of biological systems; control of gene expression;
model predictive control; switched linear system; yeast hyperosmotic stress response

1. INTRODUCTION

One major goal of systems biology is to understand the
dynamical functioning of biological systems at the cellular
level. One common approach to investigate the dynamics
of a system is to observe its response to perturbations.
For the development of a quantitative understanding (and
of quantitative models), precision in the observation and
in the perturbation are both important. With the devel-
opment of fluorescent markers, our capacity to observe
cellular processes at the single cell level has recently
greatly improved (Muzzey and van Oudenaarden, 2009).
In contrast, our capacity to perturb cellular processes in a
well-controlled, quantitative manner remains very limited.
This is particularly striking if one considers time-varying
perturbations, that are however highly informative on
system’s dynamics. This can notably be explained by the
large variability of individual cell responses to a same
external stimulation (Colman-Lerner et al., 2005; Newman
et al., 2006).

To improve our capacity to perturb cellular processes via
the expression of a given protein with a chosen temporal
expression profile, we develop a platform for the real
time control of gene expression (Uhlendorf et al., 2011).
In short, this platform allows for applying short osmotic

! This work is partially supported by the INRIA/INSERM Colage
Action d’Envergure

stresses to yeast cells, that trigger gene expression via
the activation of the so-called Hyper Osmotic Glycerol
(HOG) signal transduction pathway, and for observing
in real time the cellular response. In Uhlendorf et al.
(2011), we describe preliminary experimental results on
the control of the activity of the signal transduction
pathway, obtained using a simple proportional-integral
(PI) controller. However, the control of the full system,
being more complex and having a significant inertia, will
likely require more elaborate control methods.

In this paper, we propose a control strategy tailored to the
specificities of our biological problem. In particular, we de-
compose the system into two subsystems, corresponding to
signal transduction and gene expression, and having signif-
icantly different response times. We exploit the ‘cascaded’
structure of the system to propose a two-layer model
predictive control strategy. Additionally, to skirt the rapid
cell adaptation to stress, we adopt a pulse-modulated strat-
egy to control gene expression. The practical feasibility
and the robustness of the proposed approach with respect
to noise in the gene expression is tested in silico using a
simple, switched linear model of the osmostress response
in yeast.

The paper is organized as follows. In section 2, we briefly
present the control platform and the controlled system.
This brief description of the experimental setup motivates
important modeling and control assumptions made in the
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following section. In section 3, we detail the proposed
control strategy. Then, we test its feasibility and robust-
ness with respect to biological variability on two simple
control problems. The last section summarizes our work
and discusses results in the context of related work.

2. THE CONTROLLED SYSTEM AND THE
CONTROL PLATFORM

The overall objective is to place the expression of a
protein under the control of an external signal and to
control this expression in a precise temporal manner. This
necessitates signal transduction and gene expression. We
have chosen to exploit a natural signal transduction and
gene expression pathway: the High Osmolarity Glycerol
(HOG) pathway in the yeast Saccharomyces cerevisiae.

2.1 Exploiting the natural osmostress response

The HOG pathway senses osmolar pressure changes in
the environment. The activation of this pathway orches-
trates cellular osmotic stress responses that maintain wa-
ter homeostasis (Hohmann and Mager, 2003). More pre-
cisely, two osmo-sensor proteins (Sln1 and Sho1) transduce
the signal to the Hog1 protein via a phosphorylation cas-
cade. Once phosphorylated, Hog1 triggers different osmo-
adaptative responses that essentially favor the accumu-
lation of glycerol in the cell, thus restoring the osmotic
balance of the cell with its environment. Firstly, Hog1
regulates negatively Fps1 glycerol channels, thereby pre-
venting glycerol export (Beese et al., 2009). Secondly, Hog1
directly activates enzymes involved in glycerol produc-
tion (Westfall et al., 2008). Thirdly, Hog1 translocates into
the nucleus and regulates, directly or indirectly, the expres-
sion of a large number of genes, including genes coding for
glycerol producing enzymes (e.g. Gpd1; O’Rourke and Her-
skowitz, 2004). One can distinguish a short-term adapta-
tion response, that rapidly promotes glycerol accumulation
in the cell and a long-term adaptation response that results
in preparing the cell to face prolonged periods of osmotic
stress by triggering a large transcription program. Once
the osmotic balance is restored, Hog1 is dephosphorylated
and, in case of an excess in internal glycerol concentration,
Fps1 channels reopen allowing glycerol to leak out (Beese
et al., 2009). This pathway is schematically represented in
Figure 1(left). For our application, we slightly modify the
natural pathway. In addition to fusing Hog1 to a fluores-
cent marker that allows to detect its nuclear localization
and hence quantify its activity, we fuse under the control
of an osmo-responsive promoter the protein of interest,
called X, to a second fluorescent marker that allows the
quantification of the concentration of protein X.

Our motivation for using this pathway is threefold. Firstly,
it has been extensively experimentally studied and quan-
titative models are available (Capaldi et al., 2008; Hersen
et al., 2008; Klipp et al., 2005; Macia et al., 2009; Mettetal
et al., 2008; Muzzey et al., 2009; Zi et al., 2010). Secondly,
the output of the signal transduction pathway can be
experimentally quantified. Indeed, if Hog1 is fused to a
fluorescent protein, its nuclear localization can be quanti-
fied and provides a measure of the Hog1 activity: we have
experimentally access to an important variable (Ferrigno
et al., 1998). Thirdly, it has been experimentally shown

that for fast osmolarity changes, the pathway integrates
the signal: the transduction pathway acts as a low-pass
filter with a bandwidth approximatively equal to 5 ×

10−3 Hz (Hersen et al., 2008). This property allows us to
emulate an analog control by rapidly switching (frequen-
cies greater than 0.1Hz) between two media: the normal
growth medium and a sorbitol enriched (∼ 1M) medium.
This is important since the microfluidic device we use (see
below) does not allow for mixing solutions, whereas our
control approach uses a continuous input variable for the
external osmolarity.

2.2 The integrated platform

Because in comparison to open loop control, closed loop
control approaches are generally less sensitive to model un-
certainties and can compensate for external disturbances,
feedback control seems unavoidable for our application.
However, feedback control implies a real-time requirement:
in vivo measurements, image analysis, computation of con-
trol strategies, and actuation on the cell environment must
all be integrated and performed faster than the typical
response time of the system.

The control platform is represented in Figure 1 (right).
Time lapse fluorescent microscopy allows for monitoring
the HOG pathway activity and gene expression at the
single cell level. Using the micro-fluidic device developed
by Hersen and colleagues, the cellular environment can be
precisely controlled (2008). Not only this device allows a
fast and well-controlled change of the cellular environment,
but also, it guarantees that with the exception of its
osmolarity the cell environment is otherwise held constant.
In its current state, the platform integrates a microscope
controller, a microfluidic pressure controller, and software
for image analysis and PI control (Uhlendorf et al., 2011).

3. CONTROL APPROACH

We propose to use a model based control strategy. There-
fore, we first present a model of the system. Then, we
present and motivate the three main features of our control
strategy: using a two-layer control, pulse modulation and
a model predictive control approach. Lastly, we propose a
control algorithm implementing the proposed approach.

3.1 Model developments

Many models of the yeast stress response have been
developed (Hersen et al., 2008; Klipp et al., 2005; Mettetal
et al., 2008; Muzzey et al., 2009; Zi et al., 2010). Because
only a very limited number of variables can be measured
simultaneously in vivo in single cells, and to simplify
as much as possible parameter search, and even more
importantly, state estimation problems, we have chosen
to use models that are as simple as possible. For signal
transduction and short-term cell adaptation, it was shown
in Mettetal et al. (2008) and in Muzzey et al. (2009) that
a number of essential features of the hyperosmotic stress
response, notably its perfect adaptation and is frequency
dependence, can be captured by simple 2- or 3-variable
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Fig. 1. Left: Schematic representation of the HOG pathway with natural and engineered feedbacks. Dashed arrows indicate indirect
effects. For a detailed description, see the main text. FP1 and FP2 in the figure denote two different fluorescent proteins. Right:
The integrated control platform. The main elements of the feedback loop are (i) a micro-fluidic device allowing a rapid control of the
cellular environment, (ii) a microscope for phase contrast and fluorescence measurements, (iii) yeast cells with the protein of interest
(X), Hog1, and a nuclear marker (Htb2) fused to compatible fluorescent proteins, and (iv) Matlab software for image analysis and
controller implementation.

linear systems. Here, we propose the following switched
linear model:

- if osme ≥ osmi : (hyperosmotic conditions)
˙osmi = κohog − γoosmi

˙hog = κg(osme − osmi)− γghog
(1)
(2)

- if osme < osmi : (hypoosmotic conditions)
˙osmi = κohog − (γo + γ′

o)osmi

˙hog = −γghog
(1′)
(2′)

In this model, osme, osmi, and hog represent respectively
the relative external osmolarity, that is the input, the
relative internal osmolarity whose variations essentially
result from glycerol synthesis and degradation/export, and
the activity of the Hog1 protein, reflected by its nuclear
localization. The relative osmolarity is defined as the differ-
ence between the normal osmolarity and the osmolarity at
steady steate in the default conditions. Relative external
and internal osmolarities therefore respectively correspond
to the increase of osmolarity due to the addition of sorbitol
in the growth media and due to the synthesis of glyc-
erol in the cytoplasm. Like in the Mettetal and Muzzey
models (2008; 2009), we assume that Hog1 activation is
proportional to the intensity of the hyperosmotic stress,
osme − osmi. Using results from Mettetal et al. (2008),
we neglect the Hog1-independant glycerol synthesis and
simply assume that glycerol synthesis is proportional to
Hog1 activity. We assume that the Fps1 glycerol channels
are either open or closed, in hypoosmotic or hyperosmotic
conditions, respectively. This yields the switched nature
of the model. The term γ′

o osmi corresponds to glycerol
diffusion out of the cell through Fps1 channels (assuming
a negligible external glycerol concentration), whereas the
term γo osmi corresponds to glycerol degradation in the
cell. It was expected that γ′

o % γo. When fitting model
parameters to experimental data generated in our lab, we
indeed found that γ′

o % γo ≈ 0.

For gene expression, we use the simple reaction-based
model represented in Figure 2. In this model, mRNA syn-
thesis is proportional to the nuclear concentration of the
regulator of gene expression Hog1, and protein synthesis is
proportional to mRNA concentration. mRNA and protein
degradations are proportional to their concentrations (see

Fig. 2. A simple reaction-based model for gene expression.

Fig. 3. (a) Decomposition of the osmotic stress response system
into two subsystems: the relatively fast signal transduction
system and the relatively slow gene expression system. Known
and experimentally measurable quantities are represented. (b)
Decomposition of the original control problem into two simpler
control problems.

for example Wilkinson (2009) for a similar model). This
reaction-based model can either be interpreted with a
stochastic semantics using the Gillespie algorithm, or with
a deterministic semantics, yielding the ODEs (3)-(4).

˙rna = κmhog − γmrna
ṗ = κprna − γpp

(3)
(4)

Here, p and rna represent respectively the concentrations
of the target protein and of its messenger RNA. In this
paper the stochastic and the deterministic semantics will
be both used.

We will refer to the switched linear model (1)-(2)/(1’)-
(2’) as the (fast) signal transduction model, and to the
linear model (3)-(4) as the (slow) gene expression model.
This gives rise to the schematic representation given in
Figure 3(a), where we decompose the full system in two
subsystems: one responsible for signal transduction, and
one responsible for gene expression.

For the signal transduction model, we selected parameter
values that minimize the mean square deviation between
model prediction and experimental data produced in our
lab (Uhlendorf et al., 2011), using a global optimization
tool, implementing a covariance matrix adaptation evo-
lution strategy (CMA-ES; Hansen and Ostermeier 2001).
Parameter values are given in Table 1 (top).
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κo γo γ′
o κg γg osmi0 hog0

0.005 0 9.05 48 1.24 0 0.019

κm γm κp γp rna0 p0
0.1386 0.1386 0.3466 0.0347 0 0

Table 1. Parameter values and initial concen-
trations for the signal transduction (top) and

gene expression (bottom) models.

For the gene expression model, and in absence of gene
expression data, we used realistic parameter values. More
precisely, we used degradation parameters values that
correspond to mRNA and protein half-lives of 5 and 20
minutes (typically corresponding to a protein fused to a
destabilized CFP (Hackett et al., 2006)). For production
parameters, we used values that yield, in presence of a
prolonged gene activation (i.e. hog = 25 in our context),
a mean protein number of 250 and a standard deviation
of 10% if one uses the stochastic interpretation of our
gene expression reaction rate model (Ghaemmaghami et al.
(2003); Friedman et al. (2006); see for example Wilkinson
(2009) for the correspondence between the ODE and the
discrete stochastic interpretations of reaction rate models).
Note that the mean value for the number of protein X is
somewhat arbitrary, since our target profiles are defined
relatively to this value. Note also that protein folding time
is not explicitly taken into account here. Parameter values
are given in Table 1 (bottom).

3.2 Control strategy

The specific, ‘cascaded’ structure of our system and the
possibility to observe the hog variable motivated us to
decompose our original control problem into two simpler
control problems (Figure 3b). Firstly, given the target pro-
tein profile, one looks for a desired Hog1 profile, considered
as the input of the gene expression system. And secondly,
given the desired Hog1 profile, considered this time as
the output of the signal transduction system, one looks
for external osmolarities to apply. In each case, only the
model of the subsystem needs to be taken into account.
This approach shares analogies with backstepping control
strategies (Sepulchre et al., 1997).

Moreover, these two systems have different time scales.
Indeed, response times for Hog1 signal transduction are
typically in the order of one or 2 minutes, whereas re-
sponse times for gene expression in yeast are much slower,
typically on the order of 20 to 40 minutes. This allows us
to develop a model predictive control strategy (Findeisen
et al., 2007) in which the gene expression controller uses
long-term predictions with large sampling times (≈ 10
minutes), and the signal transduction controller uses short
term predictions with high sampling times (≈ 20 seconds).

A last important feature of the system is that cells adapt
to osmotic stresses: natural negative feedback loops restore
the cellular osmotic balance via glycerol production. For
example, it has been experimentally demonstrated that
to obtain a constant nuclear Hog1 concentration, and
hence a constant protein synthesis rate, one has to apply
a constantly increasing (‘ramp’) input (Muzzey et al.,
2009). This fact, combined with the boundedness of the

Fig. 4. Model predictive control for the GE controller. (Bottom)
Hog1 profile with n = 3 motifs, defined by doff = (2, 2, 1, 4)
and don = (1, 2, 0) times. (Top) Corresponding protein profile
(dotted line) with its reference profile (solid lines). This profile
has been computed during period A, based on the observation
O1. During periods B and D, no stress will applied (osme = 0),
whereas in period C, the signal transduction controller will be
used to apply osmotic stresses yielding the desired Hog1 profile.
Based on measurement O2, the control strategy will be updated
during period D. tp denotes the start time of the current pulse.

Fig. 5. Model predictive control for the ST controller. External os-
molarity profile corresponding to osme = (ui)i∈[0,5], computed
during period a, based on observation O1. u0 will be effectively
applied during period b, and a new osmolarity profile will be
computed based on observation O2.

input implies that such strategies cannot be applied over
long periods. Instead, we have experimentally shown -
using a simple PI controller- that trapezoidal-like motifs
of Hog1 nuclear localization can be repeatedly obtained,
provided that these motifs are separated by sufficient time
(≈ 5 minutes in our conditions, Uhlendorf et al. (2011)).
Therefore, we adopted a control strategy based on pulse-
modulated signals for gene expression (Gelig and Churilov,
1998). This pulse-modulated approach exploits the fact
that in absence of stress, glycerol channels open and let
glycerol leak out of the cell, which effectively ‘resets’ the
cell to its initial state. More precisely, Hog1 profiles will be
defined by the number n of trapezoidal motifs, and each
motif will be defined by the durations of its off state, doff ,
and of its on state, don , as represented in Figure 4. To
these times, we add fixed times for increase and decrease,
and minimal durations of the off plateau, drelax , and of
the on plateau. For our computational studies, these fixed
durations equal 2, 2, 5 and 1 minute, respectively. We also
require that all don durations last less than 6 minutes to
limit cell adaptation problems.

To summarize, we will develop a gene expression controller
that, given a target protein profile, computes a desired
pulse-modulated nuclear Hog1 profile (Figure 4), and a sig-
nal transduction controller that computes the osmolarity
to apply to get the desired nuclear Hog1 profile (Figure 5).
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3.3 Control algorithm

In this section, we propose a control algorithm imple-
menting the control strategy presented above. The algo-
rithm exploits two functions, searchHogProfile and
searchOsmProfile, that we introduce first.

For the gene expression controller, a control strategy is
defined by a nuclear Hog1 profile, that is, by the number
of peaks n and the on and off durations of the peaks,
don ∈ Rn

≥0 and doff ∈ R
n+1
≥0 , using the notations intro-

duced in Figure 4. Then, given the target protein profile
on a given time horizon (typically 100 minutes), the best
control strategy at time t is the one that minimizes the
mean square distance between the target protein profile
and the protein profile that one obtains when applying
the Hog1 profile on the input of subsystem 2, during
the given time horizon. Good -although not necessar-
ily optimal- solutions can be obtained by using global
optimization tools that search for the best parameters
n, don and doff . This is implemented by the function
[n, don , doff ] = searchHogProfile(t, sge, target), with
t the current time, sge the state of the gene expression
subsystem at time t, and target the target protein profile.
In practice, we consider a limited set of possible values for
n, and for each value, we search for don and doff parame-
ters. We assume that these computations are executed in
parallel, e.g. using a multicore processor.

For the signal transduction controller, a control strategy
on the time horizon [t, t+m∆t[ is defined by m external
osmolarity values u = (u1, . . . , um) ∈ [0, 1]m. Given a
desired nuclear Hog1 profile, the best control strategy is
the one that minimizes the mean square error between
the nuclear Hog1 profile obtained by applying the ui

osmolarities, each during ∆t, and the desired nuclear
Hog1 values, on the time interval [t, t + m∆t[. Again in
practice, good solutions can be obtained by using global
optimization tools that search for the best parameters
u1, . . . , um. This is implemented by the function u =
searchOsmProfile(t, sst, tp, n, don , doff ), with t the cur-
rent time, sst the state of the signal transduction subsys-
tem at time t, and tp, n, don , doff defining the desired Hog1
profile, tp being the start time of the first pulse.

Having defined the two functions searchHogProfile

and searchOsmProfile, we can now describe our main
algorithm (Algorithm 1). Note that the real-time require-
ment implies that measurements, image analysis, state
estimation, and control strategy updates are terminated
before the alloted time (drelax for GE control and ∆t for
ST control).

4. TESTING THE CONTROL APPROACH ON
SIMULATED DATA

Because testing control approaches on real cells is very
time consuming, we first test the proposed approach on
a simulated system. We present here these computational
results.

We define the following two control problems that might
be relevant for various applications.

• Problem 1: maintaining the concentration of protein
X at a given level

• Problem 2: obtaining a sine wave temporal profile for
the concentration of protein X

Solving the first problem in vivo would allow us to study
the effect of well-controlled, steady perturbations, whereas
solving the second control problem would allow us to
study signal processing capabilities of gene networks, as it
was done recently for signal transduction cascades (Hersen
et al., 2008; Mettetal et al., 2008).

To test the robustness of our control approach with respect
to the large variability of biological processes, we use a
stochastic interpretation of the gene expression reaction
rate model, and the Gillespie algorithm for the simulation
of system behavior (Wilkinson, 2009). For the sake of
simplicity, we ignore observation and state estimation
problems. For real-life applications, these two issues also
need to be appropriately solved.

In Figure 6, we present simulated results corresponding
to control experiments for Problem 1 and 2, and using
either a deterministic or a stochastic model for gene
expression. For the stochastic cases, the examples provided
are representative of typical results in terms of mean
square deviation with respect to target profiles. More
precisely, the root mean square (rms) distance for the
solutions shown for Problem 1 and 2 are respectively 10.6
and 8.8, while the mean rms over 10 runs is respectively
11.6 and 8.5.

These results demonstrate the feasibility of the pulse mod-
ulated control strategy proposed, and show its robustness
with respect to large biological variabilities, since for both
problems, the concentration of the protein under control
remains within admissible bounds around its target value.
Indeed, even if these results seem unimpressive for tradi-
tional control problems, obtaining similar results in vivo
would be a genuine tour de force.

Moreover, the proposed computation procedure, relying
on global optimization to implement the MPC scheme,
conforms with our real-time requirement, in the sense
that, for each iteration, the computational times of
the searchOsmProfile and searchHogProfile pro-
cedures is less than 300 and 20 seconds, respectively.

5. DISCUSSION

In this work, we have presented a specific control problem:
controlling in vivo the expression of a protein such that
its cellular concentration follows a target temporal profile.
This control problem is directly motivated by current re-
search in our lab. We have also proposed a control strategy
tailored to the specificities of our biological application.
It’s main ingredients are the use of a two-layer model
predictive control approach and of a pulse-modulated
strategy for the control of gene expression. Using a simple
switched linear model of the system, we have shown that
the proposed approach satisfies our real-time requirements
and is robust with respect to the significant noisiness of
gene expression processes.

To the best of our knowledge, the specific problem of
the precise control of the expression of a single gene has
not been previously studied. However, several approaches
have been developed for the control of gene networks.
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Control Algorithm 1 Each iteration in the external while loop corresponds to applying one pulse and computing the next one, and
each iteration in the internal while loop corresponds to applying an osmotic stress during a small ∆ t and computing the next one. Tasks
performed in a synchronous manner are represented by a || sign. t denotes the current time.

// initialization prior to control experiment, using known parameters target and s0ge.
[n, don , doff ] = searchHogProfile(0, s0ge, target)
// control experiment starts
while n != 0 do

tp = t

// B: no stress during [tp, tp + doff 1[
u1 = 0; apply u1; wait for doff 1;
// C: active control during time interval [tp + doff 1, tp + dpulse ]
while t+ ∆t < tp + dpulse do

apply u1; wait for ∆t measure sst; [u1, . . . , um] = searchOsmProfile(t, sst, tp, n, don , doff )
end while
// D: no stress and global strategy update during time interval [tp + dpulse , tp + dpulse + drelax ]
apply 0; wait for drelax measure sge; [n, don , doff ] = searchHogProfile(t, sge, target)

end while
apply u = 0; wait for doff 1
// control experiment ends with t = tend
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Fig. 6. Simulated control experiments. In all plots, dotted blue, orange, green, and solid blue represent the target protein profile, the applied
osmolarity (x50), the nuclear concentration of Hog1, and the concentration of the X protein. System behavior is either computed using
a deterministic (ODE, top) or a stochastic (Gillespie, bottom) model. Time is in minutes.

These approaches differ notably by the class of models
that is considered. One can notably mention the works of
Chaves and Gouzé (2011) and of Edwards et al. (2010),
developed for qualitative piecewise affine models, of Datta
et al. (2007), for probabilistic Boolean models, of Yu et al.
(2010) for Sum models, and of Tumova et al. (2010), for
piecewise affine models. Although we use here a simple
switched linear model (actually being in the class studied
by Tumova et al. (2010)), our MPC approach does not
exploit any specific mathematical property of the model. In
particular, we did not exploit the (piecewise) linear nature
of the model. Because the predictive power of our model
will be essential to get good performance for the control of
the real biological system, being not bound to any specific
mathematical formalism is likely to be a significant asset.

Further works naturally involve applying the proposed
framework to the control of the actual biological system.
Iterations between experiments, model developments and
control strategy improvements will likely be needed.
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Gene expression plays a central role in the orchestration of cellular
processes. The use of inducible promoters to change the expression
level of a gene from its physiological level has significantly contrib-
uted to the understanding of the functioning of regulatory networks.
However, from a quantitative point of view, their use is limited to
short-term, population-scale studies to average out cell-to-cell vari-
ability and gene expression noise and limit the nonpredictable effects
of internal feedback loops that may antagonize the inducer action.
Here, we show that, by implementing an external feedback loop, one
can tightly control the expression of a gene over many cell genera-
tions with quantitative accuracy. To reach this goal, we developed
a platform for real-time, closed-loop control of gene expression in
yeast that integrates microscopy for monitoring gene expression at
the cell level, microfluidics to manipulate the cells’ environment, and
original software for automated imaging, quantification, and model
predictive control. By using an endogenous osmostress responsive
promoter and playing with the osmolarity of the cells environment,
we show that long-term control can, indeed, be achieved for both
time-constant and time-varying target profiles at the population
and even the single-cell levels. Importantly, we provide evidence that
real-time control can dynamically limit the effects of gene expression
stochasticity. We anticipate that our method will be useful to quanti-
tatively probe the dynamic properties of cellular processes and drive
complex, synthetically engineered networks.

model based control | computational biology |
high osmolarity glycerol pathway | quantitative systems biology

Understanding the information processing abilities of bi-
ological systems is a central problem for systems and synthetic

biology (1–6). The properties of a living system are often inferred
from the observation of its response to static perturbations. Time-
varying perturbations have the potential to be much more in-
formative regarding the dynamics of cellular functions (7–12).
Currently, it is not possible to precisely perturb protein levels in an
analogous manner, even though this perturbation would be in-
strumental in our understanding of gene regulatory networks.
Indeed, despite the development of novel regulatory systems, in-
cluding various RNA-based solutions (13), transcriptional control
by means of inducible promoters is still the preferred method for
manipulating protein levels (14, 15). Unfortunately, inducible
promoters have several generic limitations. First, there is a signif-
icant delay between gene expression activation and effective
protein synthesis. Second, many cellular processes can interfere
with gene expression through internal feedback loops whose
effects are hard to predict. Third, the process of gene expression
shows significant levels of noise (16–18). Given these limitations,
novel experimental strategies are required to gain quantitative,
real-time control of gene expression in vivo.
Here, we see the problem of manipulating gene expression to

obtain given temporal profiles of protein levels as a model-based
control problem.More precisely, we investigate the effectiveness of
computerized closed-loop control strategies to control gene ex-
pression in vivo. Inmodel-based closed-loop control, amodel of the

system is used to constantly update the control strategy based on
real-time observations. We propose an experimental platform that
implements such an in silico closed loop in the budding yeast Sac-
charomyces cerevisiae. We show that gene expression can be con-
trolled by repeatedly stimulating a native endogenous promoter
overmany cell generations (>15 h) for both time-constant and time-
varying target profiles and at both the population and single-cell
levels. Recently, Milias-Argeitis et al. (19) also proposed an ap-
proach for feedback control of gene expression in yeast. In contrast
to their work, we propose amethod that is effective at the single-cell
level, for time-varying target profiles, and robust despite the pres-
ence of strong internal feedback loops. We start by describing the
gene induction system and the experimental platform before dis-
cussing its efficiency.

Results and Discussion
Controlled System. We based our approach on the well-known re-
sponse of yeast to an osmotic shock, which is mediated by the high
osmolarity glycerol (HOG) signaling cascade. Its activation leads to
the phosphorylation of the protein Hog1 (Fig. 1A), which orches-
trates cell adaptation through glycerol accumulation. Phosphory-
lated Hog1 promotes glycerol production by activating gene
expression in the nucleus as well as stimulating glycerol-producing
enzymes in the cytoplasm. After they are adapted, the cells do not
sense the hyperosmotic environment anymore, the HOG cascade is
turned off, and the transcriptional response stops (20–22). In con-
trol terms, yeast cells implement several short-term (non tran-
scriptional) and long-term (transcriptional) negative feedback loops
that ensure perfect adaptation to the osmotic stress (10, 23). Be-
cause of these adaptation mechanisms, it is a priori challenging to
control gene expression induced by osmotic stress. It is, thus, an
excellent system to show that one can robustly control protein
levels, even in the presence of internal negative feedback loops.
Several genes are up-regulated in response to a hyperosmotic stress.
These genes include the nonessential gene STL1, which codes for
a glycerol proton symporter (24, 25). We decided to use its native
promoter (pSTL1) to drive the expression of yECitrine, a fluores-
cent reporter. Applying an osmotic stress transiently activated the
HOG cascade (Fig. 1B), and yECitrine levels reached modest
values (600 fluorescence units) (Fig. 1B). Importantly, when short
but repeated stresses were applied, pSTL1 could be repeatedly
activated, and much higher levels could be reached (Fig. 1C).

Author contributions: J.U., G.B., and P.H. designed research; J.U. performed research; J.U.,
A.M., T.D., G.C., F.F., S.B., G.B., and P.H. contributed new reagents/analytic tools/software;
J.U., G.B., and P.H. analyzed data; and J.U., G.B., and P.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence may be addressed. E-mail: gregory.batt@inria.fr or pascal.
hersen@univ-paris-diderot.fr.

2G.B. and P.H. contributed equally to this work.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1206810109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1206810109 PNAS Early Edition | 1 of 6

SY
ST

EM
S
BI
O
LO

G
Y

EN
G
IN
EE

RI
N
G



A closed-loop control of the pSTL1 activity requires the ac-
quisition and analysis of live cell images, the computation of the
input (i.e., osmolarity) to be applied in the near future, and
the ability to change the cells osmotic environment accordingly
(Fig. 1 D and E).

Experimental Platform. To observe the cells and control their
environment, we designed a versatile platform made of standard
microscopy and microfluidic parts. The microfluidic device
contained several 3.1-μm-high chambers that were connected by
both ends to large channels through which liquid media could be
perfused (Fig. 1D). Because the typical diameter of an S. cer-
evisiae cell is 4–5 μm, the cells were trapped in the chamber and
grew as a monolayer. Their motion was limited to slow lateral
displacement due to cell growth (Fig. S1). This design allowed
for long-term cell tracking (>15 h) and relatively rapid media
exchanges (∼2 min). The HOG pathway was activated by
switching between normal and sorbitol-enriched (1 M) media.

Model of pSTL1 Induction. To decide what osmotic stress to apply
at a given time, we used an elementary model of pSTL1 in-
duction. Many models have been proposed for the hyperosmotic

stress response in yeast (10, 26–30). We used a generic model of
gene expression written as a two-variable delay differential equation
system, where the first variable denotes the recent osmotic stress felt
by the cell and the second variable is the protein fluorescence level
(Fig. 1D, Materials and Methods, Table S1, and SI Materials and
Methods). Because our goal was to show robust control, despite the
presence of unmodeled feedback loops, the adaptationmechanisms
described above were purposefully neglected. The choice of this
model was also motivated by the tradeoff between its ability to
quantitatively predict the system’s behavior (favors complexity) and
the ease of solving state estimation problems (favors simplicity).
Despite its simplicity, we found a fair agreement between model
predictions and calibration data corresponding to fluorescence
profiles obtained by applying either isolated or repeated osmotic
shocks of various durations (Fig. 1C and Fig. S2).

Closing the Loop. The fluorescence intensity of a single cell arbi-
trarily chosen at the start of the experiment, or the average
fluorescence intensity of the cell population, was sent to a state
estimator (extended Kalman filter discussed in SI Materials and
Methods) connected to a model predictive controller (31). Model
Predictive Control (MPC) is an efficient framework well-adapted

Fig. 1. A platform for real-time control of gene expression in yeast. (A) A hyperosmotic stress triggers the activation and nuclear translocation of Hog1.
Short-term adaptation is mainly implemented by cytoplasmic activation of the glycerol-producing enzyme Gpd1 and closure of the aqua-glyceroporin channel
Fps1. Long-term adaptation occurs primarily through the production of Gpd1. (B) When maintained in a hyperosmotic environment (1 M sorbitol), the HOG
cascade was quickly activated, which is seen by Hog1 nuclear enrichment. This transient signaling response lasted typically <20 min. The expression level of
pSTL1-yECitrine (YFP) increased after an ∼20-min delay, peaked around 600 fluorescence units after 100 min, and then decayed. (C) In contrast, the fluo-
rescence level showed a continuous increase when stimulated periodically (T = 30 min). The increase rate was larger for longer pulses (red, 8 min; yellow,
5 min). Black curves are the expected behaviors based on our model of the pSTL1 induction. Solid lines and their envelopes are the experimental means and
SDs of the cells’ fluorescence. (D) Yeast cells grew as a monolayer in a microfluidic device that was used to rapidly change the cells’ osmotic environment (blue
frame) and image their response. Segmentation and cell tracking were done using a Hough transform (orange frame). The measured yECitrine fluorescence,
either of a single cell or of the mean of all cells, was then sent to a state estimator connected to an MPC controller. A model (black frame) of pSTL1 induction
was used to find the best possible series of osmotic pulses to apply in the future so that the predicted yECitrine level follows a target profile. (E) At the present
time point (orange circle), the system state is estimated (green), and the MPC searches for the best input (pulse duration and number of pulses) (see text and SI
Materials and Methods), which minimizes the distance of the MPC predictions (black curves) to the target profile (red dashed line) for the next 2 h. Here, the
osmotic series of pulses that corresponds to the blue curve (4) was selected and sent to the microfluidic command. This control loop is iterated every 6 min.
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to constrained control problems. Schematically, given a model of
the system and desired temporal profiles for the system’s out-
puts, MPC aims at finding inputs to minimize the deviation be-
tween the outputs of the model and the desired outputs. The
control strategy is applied for a (short) period. Then, the new
state of the system is observed, and this information is used to
compute the control strategy to be applied during the next time
interval. This receding horizon strategy yields an effective feed-
back control. In practice, every 6 min, given the current estimate
of the system state, past osmotic shocks, and our model of gene
expression, the controller searched for the optimal number of
osmotic pulses to apply within the next 2 h and their optimal start
times and durations (Fig. 1E). If a shock had to be applied within
the next 6 min, then it was applied. Otherwise, the same com-
putation was reiterated 6 min later based on new observations,
thus effectively closing the feedback loop. Here, we dealt with
short-term cell adaptation by imposing a maximal stress duration
of 8 min and a 20-min relaxation period between consecutive
shocks. Under such conditions, cells stay responsive to osmotic
stress at all times (Fig. 1C). This can be explained by the fact that,
in absence of stress, the glycerol channel Fps1 opens (21, 32) and
lets the glycerol leak out of the cell, thus effectively resetting the
osmotic state of the cells (29).
Note that a proportional integral (PI) controller would have

been an attractive alternative, because it would not have re-
quired the development of a model of the system. With PI
controllers, the applied input (i.e., stress) is simply the weighted
sum of the current error (deviation between target and measured
outputs) and the integral of the (recent) past errors. Consequently,

using a PI controller to reach high levels of fluorescence would
lead to a control strategy in which high stress is maintained over
extended periods of time. This condition would trigger cell ad-
aptation and eventually lead to a stalled situation in which the
maximal stress is applied without any effect.

Closed-Loop Population Control Experiments. Our first goals were to
maintain the average fluorescence level of a cell population at a-
given constant value (set-point experiment) and force it to follow
a time-varying profile (tracking experiment). Both types of experi-
ments lasted at least 15 h, starting with a few cells and ending with
100–300 cells in the field of view (Fig. S3). The control objective
was to minimize the mean square deviations (MSDs) between the
mean fluorescence of the population of cells and the target profile.
We succeeded in maintaining the average fluorescence level at
a given constant value or forcing it to follow several given time-
varying profiles (Fig. 2 A–D, Figs. S3, S4, and S5, and Movies S1,
S2, and S3). Admissible time-varying target profiles were obviously
constrained by the intrinsic timescales of the system, such as the
maximal protein production and degradation rates. However,
within these constraints, graded responses could be obtained. In
Fig. 2C, for example, the trapeze slope is less steep than what
maximal pSTL1 induction can deliver (Fig. 2 A and B). Note that
our control strategy opened the possibility to reach higher fluo-
rescence levels than what full induction with a step shock would
allow (compare with Fig. 1B). Indeed, because of cell perfect ad-
aptation to hyperosmotic stresses, a sustained 1 M sorbitol shock
triggers only a transient gene expression and fluorescence peaks at
moderate levels (Fig. 1B). By using repeated, well-separated pulses,

Fig. 2. Real-time control of gene expression can be achieved at the population level. (A and B) Set-point control experiments with target values 1,000 and 1,500
fluorescence units (f.u.; red dashed line). This unit is the same across all graphs (no renormalization). To avoid desensitizing the HOG pathway, the controller
repeatedly applied short osmotic pulses (durations between 5 and 8 min). The timeline of osmotic events is shown at the bottom of each graph (color code along
the bottom). Shock starting times and durations were computed in real time. The measured mean cell fluorescence is shown as solid blue lines. The envelopes
indicate SD of the fluorescence distribution across the yeast population. (C and D) Tracking control experiments. In C, the target has a trapezoidal shape
(maximum at 1,500 f.u.). In D, the target is sinusoidal (average value at 1,500 f.u.). In both cases, the mean level of fluorescence successfully follows the time-
varying target profile. (E and F) Open-loop control experiments. Two examples of open-loop control (the osmotic inputs were computed using our model before
starting the experiments) showing poor control quality. Errors accumulate over time. The simulated behavior of the system is represented in violet.
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pSTL1 was iteratively activated (Fig. 1C and Movie S4). To assess
the effective control range, we performed additional control ex-
periments with target values spanning an order of magnitude (200–
2,000 fluorescence units) (Fig. S5). Despite an initial overshoot for
the lower target (200 fluorescence units), our results showed good
control accuracy over time.
Quantitative limitations of our experimental platform can orig-

inate from the model, the state estimator, the control algorithm,
and the intrinsic biological variability of gene expression. In silico
analysis showed that applying the proposed control strategy to the
(estimated state of the) system resulted in control performances
that were significantly better than those obtained experimentally
(Fig. 2 E and F and Fig. S4). Therefore, the control algorithm
performed well, and future improvements should focus on system
modeling and state estimation to better represent the experimental
state of the system. To assess the importance of biological vari-
ability and modeling limitations, we carried out open-loop control
experiments with the same objectives and the same model of the
system. A time series of osmotic pulses was computed before the
experiment and then sent to yeast cells without performing real-
time corrections. Important deviations were found, indicating clear
discrepancies between model predictions and the long-term system
behavior (Fig. 2E and F). As expected, open-loop strategies cannot
result in a quantitative, robust control of gene expression. In con-
trast, closed-loop control performs well, despite significant bi-
ological variability and/or limited model accuracy.

Closed-Loop Single-Cell Control Experiments. In a second set of
experiments, we focused on the real-time control of gene expres-
sion at the single-cell level. We tracked one single cell over at least
15 h and used its fluorescence to feed theMPC controller. As shown

in Fig. 3, we obtained results with quality that is out of reach of any
conventional gene induction system, both for constant and time-
varying target profiles (Movies S5, S6, and S7). Because of intrinsic
noise in gene expression, single-cell control was a priori more
challenging than population control. Indeed, compared with the
mean fluorescence levels in population control experiments, the
fluorescence levels of controlled cells in single-cell control experi-
ments showed larger fluctuations around the target values. How-
ever, at the cell level, the MSDs of controlled cells obtained in
single-cell control experiments were significantly smaller than the
MSDs of a cell in population control experiments (Fig. 4B, SI
Materials and Methods, Table S2, and Fig. S6). For set-point control
experiments in which fluctuations happen around a fixed reference
value, we also defined the fluorescence noise level as the standard
deviation (SD) over the mean. Again, we found that single-cell
control significantly decreased noise at the cell level (Fig. 4C, SI
Materials andMethods, Table S2, and Fig. S6). Taken together, these
results show that real-time control effectively improves control
quality and counteracts the effects of noise in gene expression when
performed at the single-cell level. Interestingly, single-cell control
experiments showed that, in few cases, the controlled cell behaved
significantly differently from the rest of thepopulation over extended
periods of time (e.g., see Fig. 3A), suggesting long-term memory
effects for gene expression spanning many cell generations. Lastly,
the fact that, for different controlled cells but the same control ob-
jective, the decisions of the closed-loop controller were markedly
different (Fig. 3E) highlights the fact that feedback control was
critical to achieve good control performance at the single-cell level.
This suggests that cell-to-cell variability and noise in gene expression
fundamentally limit the quality of any open-loop inducible system.

Fig. 3. Real-time control of gene expression can be achieved at the single-cell level. (A and B) Set-point control experiments at values 1,000 and 1,500 f.u. The
yECitrine fluorescence of the controlled cells is shown as orange lines. The blue line and its envelope indicate the mean fluorescence and the SD of the
fluorescence across the cell population. The population follows the target profile but with less accuracy than the controlled single cell. (C and D) Tracking
control experiments. In C, the target has a trapezoidal shape (maximum at 1,500 f.u.). In D, the target is sinusoidal (average at 1,500 f.u.). (E) The fluorescence
of the controlled cell in three different single-cell control experiments is represented together with the osmolarity profiles that were applied. Different
experiments are labeled with different colors, and therefore, their corresponding osmotic inputs can be identified. It appears that, for each cell, the controller
decisions were markedly different, showing that cell-to-cell variability was at play and that feedback control was critical when performing single-cell control.
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Conclusions
We showed that gene expression can be controlled in real time
with quantitative accuracy at both the population and single-cell
levels by interconnecting conventional microscopy, microfluidics,
and computational tools. Importantly, we provided evidence that
real-time control can dynamically limit the effects of gene ex-
pression stochasticity when applied at the single-cell level. This
model predictive control framework overcame the presence of
a significant delay between the environmental change and the
fluorescent protein observation and the action of strong non-
modeled endogenous negative feedback loops. The fact that
good control results can be obtained in a closed-loop setting with
a relatively coarse model of an endogenous promoter (compare
with open-loop results) suggests that extensive modeling will
not be required to transpose our approach to other endo- and
exogenous induction systems (e.g., the galactose, methionine, or
tetracycline inducible promoters). To appreciate the difficulty of
the control problems that we addressed, one should keep in mind
that the controlled system, a yeast cell, is an extremely complex
and partially known dynamical system and that the controlled
process, gene expression, is intrinsically stochastic.
Despite the fact that the importance of control theory for systems

and synthetic biology has been widely recognized for more than
a decade (33, 34), the actual use of in silico feedback loops to
control intracellular processes has only been proposed recently. In
2011, we showed that the signaling activity in live yeast cells can be
controlled by an in silico feedback loop (35). Using a PI controller,
we controlled the output of a signal transduction pathway by
modulating the osmotic environment of cells in real time. A similar
framework has been proposed by Menolascina et al. (36). More
recently, Toettcher et al. (37) used elaborate microscopy techniques
and optogenetics to control (in real time and the single-cell level)
the localization and activity of a signal transduction protein (PI3K)
in eukaryotic cells. Interestingly, they were able to buffer external
stimuli and clamp phosphatidylinositol (3,4,5)-triphosphate (PIP3)
levels for short time scales. Because these two frameworks neces-
sitate image acquisition at a high frequency, they are not suitable for
long-term experiments. Themost closely related work is the work by
Milias-Argeitis et al. (19). Using optogenetic techniques, Milias-
Argeitis et al. (19)managed to control the expression of a yeast gene
to a constant target value over a few hours. Their approach is based
on a chemostat culture and well-adapted for biotechnological
applications, such as the production of biofuels or small-molecules.
However, because it does not allow for single-cell tracking and
control, it is less adapted to probe biological processes in single-cell

quantitative biology applications. Controlling small cell populations,
or even single cells, may be needed in multicellular systems, where
cells differ by their genotype (38) or physical location (39).
Connecting living cells to computers is a promising field of re-

search both for applied and fundamental research. By maintaining
a system around specific operating points or driving it out of its
standard operating regions, our approach offers unprecedented
opportunities to investigate how gene networks process dynamical
information at the cell level. We also anticipate that our platform
will be used to complement and help the development of synthetic
biology through the creation of hybrid systems resulting from the
interconnection of in vivo and in silico computing devices.

Material and Methods
Yeast Strains and Plasmids. All experiments were performed using a pSTL1::
yECitrine-HIS5, Hog1::mCherry-hph yeast strain derived from the S288C
background. Cells were cultured overnight in synthetic complete (SC)medium
at 30 °C; 4 h before loading them into the microfluidic chip, 60 μL overnight
culture were diluted into 5 mL SC, thus obtaining an OD of ∼0.19. During the
experiment, cell growth continued, with a doubling time between 100 and
250 min (SI Materials and Methods and Movies S1, S2, S3, S4, S5, S6, and S7).

Microfluidics. Wemicrofabricated a master wafer by standard soft lithography
techniques. A microfluidic chip was made by casting polydimethylsiloxane
(PDMS) (Sylgard 184 kit; Dow Corning) on the master wafer, curing it at 65 °C
overnight, pealing it off, and bonding it to a glass coverslip after plasma acti-
vation. Cells were loaded into the imaging chamber by syringe injection. This
created a positive pressure, which let the cells enter the trap. Liquid medium
was flown by aspiration into the device using a peristaltic pump (IPC-N;
Ismatec) placed after the microfluidic device. We used a flow rate of 230 μL/
min. A computer-controlled three-way valve (LFA series; The Lee Company)
was used to select between regular medium (SC) or the same medium sup-
plemented with 1 M sorbitol. A switch of the valve state did not lead to an
instantaneous change of the cells’ environment inside the microfluidic de-
vice: a certain time (depending on the flow rate) was needed for the fluid to
pass from the valve to the channels and the imaging chamber (Fig. S1).

Microscopy and Experimental Setup. We used an automated inverted mi-
croscope (IX81; Olympus) equipped with an X-Cite 120PC fluorescent illu-
mination system (EXFO) and a QuantEM 512 SC camera (Roper Scientific). The
YFP filters used were HQ500/20× (excitation filter; Chroma), Q515LP (dichroic;
Chroma), and HQ535/30M (emission; Chroma). All these components were
driven by the open-source software μManager (40), a plug-in of ImageJ (41),
which we interfaced with Matlab using in-house–developed code. The tem-
perature of the microscope chamber, which also contained the media reser-
voirs, was constantly held at a temperature of 30 °C by a temperature control

Fig. 4. Effectiveness of closed-loop control. (A) Single-cell fluorescence time profiles in two population control experiments (thin gray lines) and three single-
cell control experiments (thick orange lines). One representative trace of a single cell in a population control experiment is shown in black. (B) Distribution of
the MSDs of individual cells in population control experiments (gray). MSDs are defined with respect to the target profiles. The orange bars (stars) show the
MSDs for the controlled cells in three single-cell control experiments. These data are compared with the mean MSD of single cells when controlling the
population (black line, circle), which shows lower control quality. As expected, the control quality of the population is better (blue line, square), because noise
in gene expression is averaged out. (C) Distribution of the noise levels defined as the ratio of the SD to the mean. Lower noise levels are observed for
controlled cells in single-cell control experiments (orange, star) than a random cell in population control experiments (black line).
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system (Life Imaging Services). Images were taken with a 100× objective (Pla-
nApo 1.4 NA; Olympus). The fluorescence exposure time was 200 ms, with
fluorescence intensity set to 50% of maximal power. The fluorescence expo-
sure time was chosen such that the fluorescent illumination did not cause
noticeable effects on cellular growth over extended periods of time. Impor-
tantly, illumination, exposure time, and camera gain were not changed be-
tween experiments, and no data renormalization was done. Therefore, the
fluorescence intensities can be directly compared across experiments.

Image Analysis. Thecellularboundarieswereidentifiedonthebright-field image
using a circular Hough transform implemented in Matlab (42). For tracking, we
compared the current image with the previous one, defined a cell-to-cell dis-
tance matrix, and used linear optimization to match pairs of cells. The tracking
process was made more robust by also considering the last but one image if
a gap was detected (caused by rare segmentation errors). The YFP fluorescence
level in each cell was defined as the mean fluorescence level taken over the cell
area after subtraction of the backgroundfluorescent level. The signaling activity
of the Hog1 cascade can be estimated by measuring the Hog1 nuclear enrich-
ment. We defined the nuclear enrichment of Hog1::mCherry as the difference
between the minimal and maximal fluorescence intensities within a cell. Maxi-
mal and minimal Hog1::mCherry intensities were computed by averaging the
fluorescence of the 15 brightest and 15 dimmest pixels, respectively.

Modeling. The controller used a two dimensional ordinary differential
equation (ODE) model to predict the behavior of the system:

_x1 = uðt − τÞ−g1x1

and

_x2 = k2x1 − g2
x2

K + x2
;

where x1 denotes the recent osmotic stress and x2 denotes the protein
fluorescence level. The osmotic input (u) is shifted by τ = 20 min to account
for the observed delay in the system. The remaining parameters have been
estimated based on several calibration experiments: g1 = 4.02 × 10−3, k2 =
0.58, g2 = 37.5, K = 750, and τ = 20 (SI Materials and Methods, Table S1, and
Fig. S2).

State Estimation. We implemented an extended Kalman filter, which esti-
mates the system state based on fluorescent observations and the model of
the system. The parameters of the filter (measurement noise R and process
noise Q) were set to R = 2,500 and Q = diag(0.37, 925).

Model Predictive Control. The controller searches for osmolarity profiles that
minimize the squared deviations between model output and target profile
within the next 120 min, while fulfilling the input constraints (pulse duration
of 5 to 8 min separated by at least 20 min). In practice, this problem is recast
into a parameter search problem, in which parameters are used for encoding
stress starting times and shock durations and solved using the global opti-
mization tool CMAES. Because image analysis and parameter searchmay take
up to 3min, the input to be applied is not immediately available at the time of
the measurement. Consequently, we apply at time t the input that was
computed at time t − 3 min.
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SI Materials and Methods
Mathematical Model. The hyperosmotic stress response is one of
the best-studied adaptation processes in yeast (1). Many math-
ematical models with various levels of complexity have been
developed (2–6). In particular, the work by Mettetal et al. (2)
showed that essential aspects of the high osmolarity glycerol
signaling cascade (amplitude and temporal profile of the protein
Hog1 nuclear localization) can be captured by an extremely
simple two dimensional linear model. Because simplicity is crit-
ical for state estimation (see below), we took inspiration from
this minimalistic model, and we propose the following ordinary
differential equation (ODE) model:

_x1 ¼ uðt− τÞ− g1x1

and

_x2 ¼ k2x1 − g2
x2

K þ x2
:

The two variables x2 and x1 denote the protein fluorescence level
and the recent osmotic stress felt by the cell, respectively,
whereas u denotes the osmolarity in the imaging chamber. The
recent osmotic stress x1 is modeled by a term integrating the
osmotic stress [u(t − τ)] and a linear decay term (−g1x1), which
lets the influence of past osmotic stresses diminish exponentially
with time. The term describing the osmolarity (u) is computed
based on (a piecewise linearization of) the profile shown in Fig.
S1 and the valve status. A delay in u aggregates times for signal
transduction, gene expression, and protein synthesis. The fluo-
rescence level increases linearly with the integrator with rate k2.
Because we did not observe any saturation of the protein fluo-
rescence levels, even for long time experiments (>10 h), in
characterization experiments (Fig. S2), we deduced that protein
degradation should not be modeled as a term proportional to its
concentration as usually assumed. A good fit altogether was
obtained using a saturating term for its degradation rate. To fit
our model parameters, we designed two types of experiments to
probe different aspects of the cell response dynamics: repeated
or isolated osmotic shocks. For both cases, we performed ex-
periments with shocks lasting 5, 6, 7, or 8 min (Fig. S2). Based on
these observations, we manually set the delay τ to 20 min and the
protein level corresponding to degradation half-saturation K to
750. In these conditions, degradation does not saturate in single
shocks experiments. The three other parameters have been set
using the global optimization tool CMAES (7) so that they
minimize the mean squared deviation between model predictions
and observations over all experiments. All parameters are sum-
marized in Table S1. Despite its extreme simplicity, we were able
to obtain an acceptable fit to the data (Fig. 1 and Fig. S2).

State Estimation. For linear systems, the standard approach for
state estimation is to use a Kalman filter. Using a linear model, the
past control inputs, and (noisy) measurements, it gives an esti-
mate of the system state together with its uncertainty. For each
estimate, the filter chooses a weighted average between obser-
vation and model prediction, the weight of each term depending
on its associated uncertainty. Kalman filters can be extended to
nonlinear systems (EKF) by linearizing the nonlinear model
around the operating points (8). Note that the delay in the model
only concerns the input. In consequence, a classical EKF can be
used without the need for specific delayed system state estima-
tion techniques. An EKF requires the tuning of few parameters,

the covariance matrix of the measurement error (R), and the
covariance matrix of the process noise (Q), where errors in both
cases are assumed to be Gaussian-distributed with zero mean. Al-
though it is very difficult to evaluate the quality of the state esti-
mation process, we were able to obtain good control performances
after setting R to 2,500 andQ to diag(0.37, 925). The value ofR has
been chosen by estimating the variance of the observations from
experimental data. The ratio of the diagonal values in Q has been
determined by the steady-state values of x1 and x2. Then, the actual
values ofQ have been determined by ensuring consistency between
the innovation residuals (the difference between model prediction
and observation) and the variance of the innovation residuals,
which is estimated by the Kalman filter.

Comparison Between Single-Cell Control and Population Control
Quality. To compare the control quality of the control loop
across different experiments, we consider the mean square de-
viation (MSD) of the measured signal with respect to the target
profile. For single-cell control experiments, the signal is simply
the fluorescence of the controlled cell. For population control
experiments, signals can either be the mean of the fluorescence
across the population of cells or the fluorescence of any cell within
the controlled population. In the first case, we refer to theMSD of
the mean, and in the second case, we refer to single-cell MSDs in
a population experiment. The mean MSD is then the mean of the
single-cell MSDs. Note the difference between the MSD of the
mean and the mean MSD (Fig. 4 and Fig. S6). In set-point and
sine wave experiments, only the time period for which the cells
effectively follow the target has been considered (the first 250 min
of the initialization phase were disregarded). To allow for
a proper quantification of control performance, only cells that
have been tracked continuously for at least 5 (set point) or 7
(tracking) hours were considered.
For set-point experiments, in which the fluorescence of the cells

remained around a fixed target value, we defined the noise level of
a measured signal as its SD over its mean. As for control quality,
we compared (in Fig. S6) the single-cell noise level in single-cell
and population control experiments with the noise level of the
mean and themean noise level for population control experiments.
We wondered whether controlling cells individually gives sta-

tistically better results than controlling them as members of
a population. The null assumption (H0) was, therefore, that
MSDs (or noise levels) of cells in single-cell control experiments
or population control experiments follow the same distribution.
The alternative assumption (H1) was that the MSDs (or noise
levels) in single-cell control experiments are statistically smaller
than in population control experiments. Because we worked with
samples of small sizes and could not a priori assume that MSDs
or noise levels follow a known probability distribution, we used
a nonparametric method (9), the Fligner–Policello (FP) test
(10). Like the Wilcoxon–Mann–Whitney test, the FP test is one
of the most powerful nonparametric tests used to check whether
two independent samples have been drawn from the same dis-
tribution. However, in contrast to the Wilcoxon–Mann–Whitney
test, the FP test allows for comparison of samples having dif-
ferent variances (Behrens–Fisher problem) (9). This difference is
important, because we expected that single-cell control reduced
the variance of MSDs. In its one-sided form, the FP test ad-
dresses precisely the question stated above (H0 vs. H1). As shown
in Table S2, the test revealed that single-cell control does sta-
tistically improve control performances for both MSDs (at least
in one case) and noise levels.
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Fig. S1. The microfluidic device. (A) Schematic representation of the microfluidic device. A flow is created in the channels thanks to a peristaltic pump placed
downstream. Upstream, a valve allows switching between the two media. (B) Using ink, we measured the dynamics of fluid exchange. This switching profile
was obtained in a robust manner. (C) Close up of the microfluidic device. (D) Cells are captured within thin chambers. The media in the imaging chamber are
exchanged by diffusion. (E) An example of cell imaging, segmentation, and tracking is shown.
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Fig. S2. Calibration experiments. (A–D) Isolated osmotic shocks lasting 5, 6, 7, and 8 min were applied every 4 h. (E–H) Osmotic shocks lasting 5, 6, 7 and 8 min
were applied every 30 min. The fluorescence of yECitrine, controlled by the STL1 promoter, was quantified. Experimental means and SDs are represented as
blue lines and blue envelopes. Model predictions using the parameters of Table S1 are represented in red. Note that the scales for fluorescence intensities in
repeated or isolated shock experiments are significantly different.
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Fig. S3. Cell growth during experiments. (A) Cell growth in the field of view. The number of cells detected in the field of view is depicted in violet. In most
experiments, the field of view is completely covered with cells after 800–900 min. Cells growing out of the imaging chamber are washed away by the flow, and
the number of cells detected in the field of view reaches a plateau (the maximal number of cells in the field of view is around 300). (B) Strong osmotic shocks
are known to transiently stop the cell cycle. In this experiment, repeated strong osmotic inputs were applied to reach the target value of 1,500 fluorescence
units (f.u.). These inputs led to a slowdown of the cell cycle, and the cells grew slower compared with the experiment shown in A.

Fig. S4. Performance of the model predictive control algorithm. In this plot of the population control experiments from Fig. 2B, the Kalman estimation is
indicated as a green line, and the predictions of the best control strategy found at each iteration of the model predictive controller are plotted as violet lines. It
shows that good (theoretical) control strategies were found by the controller. Limitations are, therefore, likely to come essentially from model inaccuracies and
biological variability. The red envelope around the reference indicates a region close to the reference (±3%).
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Fig. S5. Assessing control capabilities of the proposed platform. We investigated the lower and higher limits for set-point control using the proposed
platform. (A) In the first experiment, we set the target value at a very low level: 200 f.u. The control result shows a significant overshoot at the beginning, but
after ∼300 min, the observed fluorescence level follows the target value faithfully. Lower control objectives are hardly possible with our experimental setting,
because these control targets would be within the background fluorescence level of a cell (around 30 f.u.). (B) In the second experiment, we tested the upper
limits of the control platform by setting the target value at 2,000 f.u. The control works but shows significant levels of noise. These results show that one can
control gene expression within a 10-fold range using the proposed experimental setting.
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Fig. S6. Comparison of the control qualities and the noise levels between single-cell and population control experiments. (A–D) Histograms showing the
distribution of single-cell MSDs in population control experiments. MSD of the mean (blue bar, square), mean MSD (black bar, circle), and MSD of the con-
trolled cells in three single-cell control experiments (orange, star). (A) Target control at 1,000 f.u. (B) Target control at 1,500 f.u. (C) Trapeze control (Fig. 2). (D)
Sine wave control (Fig. 2). (E and F) Histograms showing the noise levels of single-cell fluorescence in population control experiments. Noise level of the mean
(blue bar, square), mean noise level (black bar, circle), and noise levels of the controlled cell in three single-cell control experiments (orange, star). E and F
correspond to set-point control experiments at a value 1,000 and 1,500, respectively.
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Table S1. List of parameter values

Name Value

g1 4.02 10−3

g2 37.5
τ 20
k2 0.581
K 750

Table S2. Computation of the Ù statistic, its associated P value for
MSDs and noise levels, and the two set-point control
experiments using the FP test

Experiment N1 N2 Ù P value*

MSD, T = 1,000 f.u. (Fig. S6A) 92 3 171 0.15
MSD, T = 1,500 f.u. (Fig. S6B) 73 3 172 1.7 10−7

Noise level, T = 1,000 f.u. (Fig. S6E) 92 3 202 3.7 10−3

Noise level, T = 1,500 f.u. (Fig. S6F) 73 3 144 8.5 10−3

N1 and N2 are sample sizes.
*As standard for the FP test, the P value computation uses the normal
approximation.

Movie S1. Population control I. The target profile is constant (T = 1,500 f.u.).

Movie S1
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Movie S2. Population control II. The target profile is a sine wave.

Movie S2

Movie S3. Population control III. The target profile is a trapeze.

Movie S3
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Movie S4. Response to sustained or periodic hyperosmotic shock (1 M sorbitol).

Movie S4

Movie S5. Single-cell control I. The target profile is constant (T = 1,500 f.u).

Movie S5
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Movie S6. Single-cell control II. The target profile is a sine wave.

Movie S6

Movie S7. Single-cell control III. The target profile is a trapeze.

Movie S7
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The High Osmolarity Glycerol (HOG) MAP kinase pathway in the budding yeast Saccharomyces cerevisiae is one of the
best characterized model signaling pathways. The pathway processes external signals of increased osmolarity into appropriate
physiological responses within the yeast cell. Recent advances in microfluidic technology coupled with quantitative modeling, and
techniques from reverse systems engineering have allowed yet further insight into this already well-understood pathway. These
new techniques are essential for understanding the dynamical processes at play when cells process external stimuli into biological
responses. They are widely applicable to other signaling pathways of interest. Here, we review the recent advances brought by these
approaches in the context of understanding the dynamics of the HOG pathway signaling.

1. Introduction

Living organisms have evolved specialized biochemical
pathways to cope with stressful, often changing environ-
ments. Even in simple cells such as yeast, thousands of
specialized sets of sensing and signaling proteins form
modules used to monitor and adapt to the environmental
state and its variations. Such modules can be insulated
or, on the contrary, connected to one another. Whereas
insulation allows for robust and sensitive response, the
interconnection of modules allows for higher-level behav-
ior such as multiple input sensing and decision making
through cross-talk [1]. For a given stimulus, the biochemical
components of the different modules that play a role in
the cellular response are usually well described in the
literature. Their biological functions and interactions are
known in detail, especially in model organisms such as
the budding yeast. This knowledge comes from decades of
complex, tedious, and elegant experiments. Genetic tech-
niques such as gene deletion, mutation, and overexpression
have been used to infer the connection patterns between
proteins and the architectures of many modular functions.

Biochemical assays provided crucial information on protein
phosphorylation and kinase activity. Microarrays revealed
the role of these modules in determining global gene
expression.

Signaling pathways are naturally dynamic [2] in that cells
must respond to external signals in a timely manner, and
indeed, the cellular response is often affected by the temporal
properties of the external signal. In addition, the internal
dynamics and timing of events in the signaling pathway
determine the cellular response. These internal dynamics
determine the information flow, allowing cells to process and
convey information from a sensory input to a specific protein
in charge of orchestrating the cellular response [3]. Until
recently, experimental techniques have been limited such
that most studies have examined the response of a signaling
pathway to a stationary stimulus. Accordingly, adaptation
and cellular responses to environmental cues were usually
studied only with respect to the magnitude of the stimulus
without seriously taking into account dynamical aspects.
Identification of the components of a signaling pathway
through the techniques mentioned above, combined with
studies of simple stationary stimuli, is not enough to
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understand the dynamics or systems-level properties of a
complex biological network.

With the emergence of systems biology, there has been
an important paradigm shift, and it is becoming increasingly
clear that the temporal variations of stimulatory inputs can
be directly sensed by cells [5] and that studying cells in
time-variable environments is a powerful way to determine
signaling pathway architecture and to understand how they
process information [6, 7]. Experimental microfluidics-
based strategies have matured to allow for excellent control of
the cellular environment both in time and space [8, 9]. This
technology coupled with genetic engineering to fluorescently
tagged proteins allows for real-time observation of the
system’s response using fluorescence microscopy. Finally,
quantitative real-time measurements form the basis for the
development of mathematical models and the use of signal
analysis tools, such as reverse engineering, to model the
dynamical aspects of signaling pathways [10]. These models
in turn provide testable experimental predictions.

This review describes the recent strategies that have
been developed to assess quantitatively the dynamics of the
canonical HOG MAP kinase (MAPK) pathway in the yeast,
Saccharomyces cerevisiae. We shall first briefly review the key
characteristics of the organization of the HOG pathway. We
then discuss the novel experimental and modeling tools [10,
11, 16–18] that are allowing new insights into the pathway’s
dynamics and systems-level behavior.

2. MAPK Cascades in Yeast

Among signaling pathways, the Mitogen Activated Protein
Kinases (MAPK) family has received considerable attention.
MAPK pathways are very well conserved from yeasts to
mammals [19–21] and several comprehensive reviews are
available in the recent literature [22, 23]. MAP Kinase
pathways are involved in many cellular processes such
as stress response, the regulation of differentiation and
proliferation. These pathways contain a canonical module of
three protein kinases that act in series (Figure 1). Upon phos-
phorylation by an upstream protein, a MAP kinase kinase
kinase (MAPKKK) phosphorylates a MAP kinase kinase
(MAPKK) on conserved serine and threonine residues,
which in turn phosphorylates a MAP kinase (MAPK) on a
threonine (sometimes serine) and a tyrosine residue located
adjacent to each other and separated by a single amino acid
(Thr/Ser-X-Tyr). This dual phosphorylation site is located
in the activation loop of the catalytic domain and its dual
phosphorylation is needed for activation of the MAP kinase.

There are five MAPK modules in yeast (Table 1) [22].
The hyperosmotic glycerol (HOG) pathway is activated in
response to a hyperosmotic stress [24–28]. The Cell Wall
Integrity (CWI) module controls the cell wall integrity and is
triggered in response to numerous stresses including cell wall
deterioration, temperature shifts, and hypo osmotic shocks
[29–31]. The pheromone pathway [32, 33] controls the
mating response which involves an important morphological
deformation of yeast cells. Finally, the filamentous growth
pathway [33, 34] and the sporulation pathway [22] control
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ADP ATP

MAPKK MAPKK
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Figure 1: The canonical structure of a MAPK cascade. We used
the Systems Biology Graphical Notation (SBGN) [4] to represent
the interactions between the MAP Kinases. Activations of MAPK
occur through enzymatic phosphorylation and ATP consumption.
Interactions with other components and in particular with phos-
phatases are not shown. In the case of the HOG pathway in yeast,
dual phosphorylation of the final MAPK (Hog1p) occurs within a
few minutes after an hyper-osmotic stimulus.

the response to starvation for haploid and diploid cells
although the sporulation pathway is not as well known as
the other four MAPK pathways. Only its MAPK has been
identified in diploid cells (Smk1p), and it is thought to
drive the spore cell wall assembly [22]. Though they share
numerous components, the five MAPK pathways of the
yeast Saccharomyces cerevisiae are tightly regulated by cross-
talk and mutual inhibition which permit faithful signaling,
adaptation to their environment, and regulation of growth
and morphogenesis [22]. Among these MAPK pathways, the
HOG pathway (Figure 2) is particularly well suited to study
signaling dynamics, since it can be reliably activated through
increasing the osmolarity of the environment.

3. The HOG MAPK Signaling Pathway

Water homeostasis is fundamental for life. In nature, the
environment can vary rapidly from isotonic to hyper or hypo
osmotic conditions, and yeast cells have to adapt quickly
[23, 47]. The first response after a hyperosmotic shock is the
rapid loss in few seconds of cell volume due to water efflux
and the activation of membrane sensory receptors followed
by the activation of the HOG pathway which is completed
after a few minutes (Figure 2) [11, 48]. Two distinct branches
of the pathway detect changes in osmolarity and activate the
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Table 1: The MAPK pathways in S. cerevisiae. The morphological adaptation corresponds to the cell behavior in response to each specific
signaling input. The major molecular actors for each pathway are indicated below. Spore cell wall assembly during sporulation is another
morphogenetic process driven by a MAPK protein (Smk1p), but with little knowledge on the other proteins involved and the structure of
the pathway.

External Stress Pheromone Starvation Hyperosmolarity Cell wall Stress

Morphological
Adaptation

Membrane Sensors Ste2/3 Sho1
Sln1, Sho1, Msb2, Hkr1,

Opy2
Wsc1, Mid2

MAPKKK Ste11 Ste11 Ssk2/22 & Ste11 Bck1

MAPKK Ste7 Ste7 Pbs2 Mkk1/Mkk2

MAPK Fus3/Kss1 Kss1 Hog1 Slt2

Transcription factors Ste12 [22, 35] Ste12, Tec1 [22, 35, 36]
Hot1, Sko1, Smp1, Msn2/4

[22, 28, 37, 38]
Rlm1, Swi4/6 [22, 39, 40]

Inhibition
Msg5, Ptp2, Ptp3

[21, 41, 42]
—— [21]

Ptcs, Ptp2, Ptp3
[21, 43–45]

Msg5, Ptp2, Ptp3, Sdp1
[21, 30, 46]

pathway. These branches converge at the level of the MAPKK
Pbs2p. The first branch is referred to as the SHO1 branch
[23, 49], while the second is referred to as the SLN1 branch
[50, 51].

Sln1p negatively regulates the HOG signaling pathway
and deletion of SLN1 is lethal due to pathway overacti-
vation. This lethality is suppressed by knocking out any
of the downstream components SSK1, SSK2/SSK22, PBS2,
or HOG1. Sln1p contains two transmembrane domains,
a histidine kinase domain and a receiver sequence. Sln1p
autophosphorylates on its histidine kinase domain. The
phosphate group is then transferred to its receiver domain,
then to Ypd1p and finally to Ssk1p. This set of three proteins
forms a phosphorelay [50, 51], a very common signaling
motif in prokaryotes [51], but rare in eukaryotic cells such
as yeast. The phosphorylated form of Ssk1p is inactive and
the downstream MAPK pathway is usually not activated.
However, after a hyperosmotic stress, Sln1p is inactivated
by an unknown mechanism (though it has been proposed
that Sln1p is sensitive to membrane tension [23, 52]) leading
to the inactivation of Ypd1p and derepression of Ssk1p.
Finally, unphosphorylated Ssk1p binds to the MAPKKKs
Ssk2p and Ssk22p, which autophosphorylate, and then can
phosphorylate the MAPKK Pbs2p. Sln1p seems to dominate
the kinetic response of the pathway while also ensuring
its robustness by inducing high basal Hog1p expression
counteracted by a fast-acting negative feedback to allow rapid
pathway response [53]. Thus, this tightly tuned signaling
branch allows rapid and sensitive responses to environmental
changes.

Sho1p consists of four transmembrane domains and
an SH3 domain. This domain permits the recruitment of
molecular actors, notably the MAPKK Pbs2p, to the plasma
membrane [54]. The upstream kinase Ste20p, the G-protein
Cdc42p, and the MAPKKK Ste11p needed for the activation
of the protein Pbs2p are also recruited to the membrane [55].
Since it is a transmembrane protein, Sho1p has long been
considered an osmosensor [56]. However, recent studies

suggest that Sho1p is more an anchor protein than a sensor
for osmolarity [55]. Hkr1p and Msb2p, two mucin-like [57–
60] proteins that form heterooligomeric complexes with
Sho1p [58, 59] have recently been proposed as osmosensors
of the SHO1 branch. Components of the SHO1 branch
also take part in pseudohyphal development and mating,
indicating that Sho1p might not have a specific role in
osmosensing but a more general role related to cell shape
measurement [61].

MAPKKKs of these two initiating branches induce the
phosphorylation of the MAP kinase kinase Pbs2p on the
conserved residues Ser514 and Thr518 [62]. Pbs2p is a
cytoplasmic protein essential for the activation of Hog1p by
dual phosphorylation on the conserved Thr174 and Tyr176
[62]. PBS2 and HOG1 are essential for osmoadaptation
as null mutations in both genes induce osmosensitivity
[23, 63]. Pbs2p also plays the role of a scaffold for the
SHO1 branch [49, 54, 56, 64] by anchoring the different
components, promoting signal propagation between proper
protein partners and preventing improper cross-talk between
the Pheromone pathway and the HOG pathway. Once Pbs2p
phosphorylates Hog1p, Hog1PP translocates to the nucleus
in a manner that is dependent upon the karyopherin Nmd5p
[65]. Localization of Hog1p-GFP to the nucleus can be used
as a reliable reporter of pathway activity.

4. Sequential Response after
a Hyperosmotic Shock

The activation of the Hog1p MAPK triggers several responses
on different time-scales (Figure 3) [48]. A rapid non-
transcriptional response in the cytoplasm corresponds to
the closure of Fps1p [66] and the activation of several
kinases (e.g., Rck2p [67], Pfk2p [68]). Fps1p belongs to the
ubiquitous Major Intrinsic Protein (MIP) [69] family and
is known to play a central role in yeast osmoadaptation
by controlling both uptake and efflux of the osmolyte
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Figure 2: The HOG pathway. View of the main molecular actors
involved in the hyperosmotic glycerol pathway (see text for more
details). Two branches led by Sho1p and Sln1p are sensitive to
high osmolarity and lead to the activation of Pbs2p and Hog1p
after a hyperosmotic shock. Hog1p has both a cytoplasmic and
a nuclear role, with different timescales, that correspond to a
fast non transcriptional response and a longer response involving
transcription when dealing with strong hyper osmotic shock. The
yeast pictures at the bottom show nuclear localization of Hog1p
tagged by GFP after a moderate hyper-osmotic shock (Sorbitol,
1 M). Colocalization with the nucleus is seen on the overlay pictures
between the GFP channel (Hog1p) and the RFP channel (Htb2p).
Note that localization is transient and reversible if the cell is put
back into isotonic conditions.

glycerol [70]. Importantly, Fps1p is gated by osmotic changes
[66, 71]. Indeed, this channel protein is closed under
hyperosmotic stress to enable intracellular accumulation of
glycerol, whereas it is open under low-osmolarity conditions
to allow for glycerol efflux.

On a longer time scale, several minutes after an osmotic
shock, Hog1p induces the modification of expression of
nearly 600 genes [72–75]. This transcriptional response is
driven by intermediate transcriptional factors: Hot1p, Sko1p,
Smp1p, and Msn2/4p [37, 38, 74, 76, 77]. Importantly,
Hog1p initiates glycerol biosynthesis via the transcriptional
factor Hot1p [38]. Glycerol production is due to the expres-
sion of glycerol-3-phosphate dehydrogenase and glycerol-
3-phosphatase. Both enzymes are encoded by two similar
isogenes, GPD1, GPD2 and GPP1, GPP2, respectively, [78,
79]. The accumulation of glycerol results in an increase
of the internal osmolarity, leading to water influx and cell

size recovery. Hot1p is also involved in regulating glycerol
influx by inducing a strong and transient expression of
STL1, which codes for a glycerol proton symporter located
in the plasma membrane [80]. Hog1p is dephosphorylated
and exported from the nucleus via the karyopherin Xpo1p
[65] 20 to 30 minutes after an osmotic shock depending
on the severity of the shock. This is concomitant with the
onset of glycerol production and restoration of osmotic
balance. Dephosphorylation of Hog1p is due to nuclear
phosphatases. Phosphatases have a critical role in down-
regulation of MAPK proteins whose excessive activation
can be lethal for the cell. In yeast, three classes of protein
phosphatases are known to downregulate MAPK pathways.
The dual specificity phosphatases (DSPs) dephosphorylate
both phosphotyrosine (pY) and phosphothreonine (pT).
The protein tyrosine phosphatases (PTPs) dephosphorylate
only tyrosine residues. Finally, protein phosphatases type
2C (PTC) dephosphorylate threonine, serine, and some-
times tyrosine residues. For the HOG pathway, the serine-
threonine phosphatases Ptc1p, Ptc2p, and Ptc3p act on both
the Pbs2p (MAPKK) and Hog1p (MAPK), while the tyrosine
phosphatases, Ptp2p and Ptp3p strictly control Hog1p [43,
44, 49]. Ptp2p is predominantly localized in the nucleus,
Ptp3p in the cytoplasm, while the protein phosphatases types
2C are located both in the cytoplasm and in the nucleus.
Simultaneous knockout of both PTP2 and PTC1 is lethal
for the cell [45]. Deletion of PTP3 induces overactivation
of Hog1p but is not lethal because it predominantly acts on
other MAPK proteins involved in the mating pathway.

5. Towards a Model of the HOG Pathway

Years of genetic and biochemical analysis have provided us
with an extraordinarily precise description of the key players
in the HOG pathway. What about the signaling dynamics
of the pathway? How does the architecture determine the
pathway’s signal processing ability? Classic molecular biology
experiments were based on step shock experiments with
an osmotic agent, such as NaCl or sorbitol at various
concentrations. Phosphorylation states of key proteins have
been measured at different time points after a step shock
at the population level, showing a transient increase of
phosphorylation (lasting several minutes) concomitant with
nuclear enrichment of Hog1p [81]. Nuclear cytoplasmic
shuttling of Hog1p was also observed qualitatively, indicating
a fast deactivation of the pathway when cells are returned
to an isotonic environment [81]. Levels of gene expression
have been measured at different timepoints after an osmotic
shock using microarrays [73]. Although done with a low
resolution in time compared to biophysical experiments,
these measurements give an idea of the dynamics of the
activation of the pathway.

Based on such measurements, several models have been
proposed to describe mathematically the HOG signaling
pathway and more generally osmoadaptation in yeast [82].
The most comprehensive and the first integrative one is due
to Klipp et al. [81]. Their model takes not only the HOG
signaling cascade into account (only the SLN1 branch), but
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Figure 3: Sequential sketch of yeast adaptation to a hyperosmotic shock. The evolution with time of the size, phosphorylation of Hog1p, and
internal concentration of glycerol are schematically represented in the center of the picture. (1) After an increase of the external osmolarity
(green), a first mechanical response corresponds to a rapid loss of water (blue arrow). It leads to a decrease of the cell size and a loss of turgor
pressure. (2) HOG osmosensors (blue) activate the pathway and eventually lead to the phosphorylation of Hog1p. (3) Hog1PP induces
several processes: (a) Inactivation of the glycerol channel Fps1p preventing glycerol leakage; (b) direct or indirect activation of cytoplasmic
actors, for example, 6-phosphofructo-2-kinase (Pfk2p) involved in glycerol synthesis; (c) translocation in the nucleus. Note that there are
other targets of Hog1p such as Sic1p, Hsl1p, Nha1p, and Tok1p. (4) Nuclear Hog1PP induces a large transcriptional response. In particular,
the gene GPD1 leading to glycerol synthesis is upregulated. Negative feedbacks (glycerol production, phosphorylation of Sho1p, etc.) allow
inhibition of the pathway activity. (5) Increase of the internal glycerol leads to water influx and progressive cell size recovery while Hog1p is
exported from the nucleus. (6) Pathway is off, and turgor pressure and cell size are restored. The cell is adapted to its new environment.

also includes a description for the metabolic production of
glycerol, as well as an elementary gene expression model for
the enzymes involved in glycerol production. The model also
includes the closure of the membrane glycerol tranporter
Fps1p and takes the dephosphorylation of nuclear Hog1p
by Ptp2p into account. Most reactions in the model were
described by the mass action rate law. The model consisted of
70 parameters, of which 24 had to be estimated. To estimate
this number of parameters with the limited data available,
the authors divided the model in modules and fitted them
separately to data points. Their model reproduced accurately
the transient response of the HOG pathway after a single
hyperosmotic shock. This included the phosphorylation
states of Hog1p and Pbs2p, as well as glycerol production
and cell-size recovery. In addition, the model was able to
correctly predict the effect of different mutations of proteins

involved in the pathway. Mutants unable to produce glycerol
(gpd1∆, gpd2∆) [83] or to close the Fps1p channel showed
an increased duration of HOG activity. Mutants with an
increased phosphatase Ptp2p activity showed a lower level of
phosphorylated Hog1p but a similar period of HOG activity.

Although very promising, such an approach is still
extremely difficult to fine tune since it relies on many
unknown parameters. Comparison of the model outputs
to experimental data is crucial. To further constrain and
test complex models one needs quantitative, time-resolved
experiments at the single-cell level in response to complex
input signals.

As engineers do with electronic circuits and chips, a very
powerful way to explore the dynamics of a given system is
to observe its response to complex input signals. Such an
approach lends itself to developing minimal models that
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Figure 4: Different microfluidics techniques to control the chemical
environment of single yeast cells while imaging them through
microscopy. (a) Microfluidic system as described in Hersen et al.
[11]. Yeast cells are fixed in the channel by the lectin protein
Concanavalin A. One inlet is filled with an iso-osmotic media
(blue) and the other with a hyperosmotic media (orange). By tightly
controlling the pressure in each inlet, it is possible to create a
periodic shock on the cells. (b) Optical tweezers system (red) as
described by Eriksson et al. permits to control the cells position in
the channel with two fluids flowing side by side [12]. (c) The system
developed by Charvin et al. uses a dialysis membrane (green) to trap
cells on top of a soft PDMS slice [13]. (d) Multilayer microfluidic
device [14]. The top layer (green) is used to capture cells. By
controlling the pressure inside this channel, cells can be optimally
trapped while subjected to periodic shocks. The bottom layer is used
to culture cells.

capture the dynamical properties of the pathway, such as
feedback loops and signal processing abilities, without taking
into account all the details of the biochemical reactions.
These approaches require designing experimental systems
in which the extracellular environment can be quickly and
precisely varied. We will now review the innovative method-
ologies that have been recently used to study single yeast
cells in time varying environments. Then, we will review
how those measurements have been integrated into minimal
modeling to further study the dynamics of the HOG pathway.

6. Fast Control of the Chemical Environment of
Single Cells

Several approaches, using microfluidics [8, 9, 84, 85], have
been recently proposed to allow for a fast and reliable control

of the chemical environment of yeast cells [7]. Hersen et
al. [11] designed a fast binary switch to repeatedly change
the environment of single yeast cells between two chemical
conditions as fast as every second (Figure 4(a)). They used a
Y-shaped flow chamber, 50 µm high and 500 µm wide, with
two inlets. One inlet was filled with an isotonic medium,
and the other with the same culture medium complemented
with sorbitol to increase its osmolarity. At such small scales,
flows are laminar and fluids do not mix but rather simply
flow side by side. The lateral position of the fluids interface
is set by the relative hydrostatic pressure—or the relative
flux—of the two inlets. Changing this pressure difference
displaces the interface laterally in less than a second. Yeast
cells, previously fixed in the channel through concanavalin-
A coating were then repeatedly switched from an isotonic
to a hyperosmotic environment. An interesting alternative
developed by Eriksson et al. [12] consists of moving the
cells with optical tweezers (Figure 4(b)) rather than moving
fluids over fixed cells. This strategy removes the potential
influence of cell adhesion on signaling dynamics related
to morphological changes, but at the cost of technological
complexity. Also, such a strategy is very time consuming.
Holographic tweezers—a sophisticated version of optical
tweezers—can help to increase the number of cells that can
be observed in real time [86]. Another strategy was proposed
by Charvin et al. [13, 87]. Yeast cells are fixed between a
permeable dialysis membrane and a cover slip coated with
a very thin layer of soft PDMS (Poly-Di-MethylSiloxane).
A channel is placed on top of the membrane and allows
flow of fresh media and exchange within a few minutes.
Nutrients and other chemicals can freely diffuse through
the membrane. With this device, environmental exchange
happens more slowly, but cells can grow over several
generations in a monolayer simplifying their observation
through microscopy. Indeed, Charvin et al. used it to force
periodic expression of cyclins in yeast growing exponentially
up to 8–10 generations.

More complex devices have been proposed, though they
require a high degree of expertise to fabricate and manipu-
late. Bennet et al. [88] developed an environmental switcher
capable of generating sinusoidal inputs. Their multilayer
device was composed of a microchemostat, with a depth
of 4 µm to force yeast cells to grow in a monolayer, and a
fluid mixer to generate complex time varying environmental
signals for the cells in the chemostat chamber. They used this
device, in a particularly elegant work, to revisit the wiring
of the GAL system in yeast, by subjecting cells to sinusoidal
inputs of carbon source over a range of frequencies. Tay-
lor et al. [14] described a high throughput microfluidics
single-cell imaging platform to study the dynamics of the
pheromone response in yeast. They combined a fluidic
multiplexer, an array of channels, and many sieve valves to
trap cells and to control fluid delivery. They were able to
perform simultaneous time lapse imaging of 256 chambers
with 8 different genotypes with several dynamical inputs.
Such a strategy, although very sophisticated, can enhance
dramatically the quantity of data gathered to improve our
knowledge and refine modeling of MAPK pathways in
yeast [7].
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Figure 5: Schematic representation of the Hog pathway models of Mettetal et al. [10] and Zi et al. [15]. Pictures are redrawn from original
figures of these papers. Top: (a) Diagrammatic representation of Mettetal’s model. Au(t) represents the osmolarity applied at time t and
the variables x and y can be identified with the intracellular glycerol concentration and the enrichment of Hog1 in the nucleus. The model
contains a feedback depending on Hog1p (with strength β) and one, which is independent of Hog1p (strength α). The equations for this
model read ẏ = (A0u − x) − γy and ẋ = α(A0u − x) + βy. (b) The same model, interpreted in biological terms. The export of osmolytes is
regulated by a mechanism, which does not depend on the MAPK pathway (e.g., closure of Fps1p) and by a mechanism depending on Hog1p
activation. (c) Diagram of the model structure proposed by Zi et al. The model includes a simplified version of the MAPK pathway as well
as two different feedbacks induced by activated Hog1p (a slow transcriptional and a fast nontranscriptional). Both of these feedbacks act by
increasing the production of glycerol.

7. New Insights from Coupling Complex
Stimulus and Reverse Systems Engineering

Using such microfluidics strategies (Figure 4(a)), Hersen et
al. studied the HOG pathway response to periodical osmotic
stimulation over a range of frequencies. Interestingly, the
HOG pathway acts as a low-pass filter, meaning that the
output of the pathway (Hog1p nuclear localization) does not
follow a fast varying input precisely, but rather integrates
fast fluctuations over time. For wild-type strains, when the
input signal varies slower than once every 200 s, Hog1p

cytoplasmic—nuclear shuttling follows the input variations
faithfully [11, 17]. However, when the input varies more
rapidly than every 200 s, Hog1p nuclear translocation no
longer follows the input faithfully, but instead integrates
over the input fluctuations [11, 17]. This typical time is
also the slowest time (or limiting step) of activation of the
pathway although it was not possible from these experiments
to point out which biochemical step was limiting. By genetic
removal of one of the two branches, the contribution of each
branch was also measured by Hersen et al., and it was found
that the SHO1 branch is slower than the SLN1 branch by
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almost a factor two. The SHO1 branch was actually unable
to integrate the too fast variations of the input whereas the
SLN1 branch, when taken alone, was displaying a similar
behavior than wild-type cells [11]. Those investigations
clearly evidenced that the pathway can be turned off very
quickly and repeatedly, suggesting the existence of several
feedback loops acting on different timescales.

An attempt to decipher the dynamical aspects of these
feedback loops has been done by Mettetal et al. [10], who
also examined the response of the Hog1p nuclear localization
in response to an oscillating input. They constructed, based
on these frequency experiments, a simple predictive model,
which was not based on biological knowledge (Figure 5(a)).
Subsequently, they identified the two variables of their
model with the intercellular osmolyte concentration and the
phosphorylation state of Hog1p and concluded that the path-
way contains a Hog1-dependent and a Hog1-independent
feedback mechanism. By underexpressing Pbs2p, thereby
reducing the sensitivity of the Hog1-response to the input,
they were able to isolate the Hog1-independent feedback
from the Hog1-dependent feedback. Based on this they
concluded that the Hog1-dependent feedback is required
for fast pathway inactivation. By inhibiting translation,
they showed indeed that the slow transcriptional response
triggered by Hog1p is only necessary for the adaptation to
multiple osmotic shocks, while for a single osmotic shock
faster nontranscriptional feedback mechanisms dominate
the response. Their conclusion is in perfect agreement with
recent experimental investigations showing that even cells
with Hog1p anchored to the membrane present an increase
of glycerol production after a hyperosmotic shock [89].
Although the details are not known, Hog1p directly or
indirectly activates the 6-Phosphofructo-2-kinase (PFK2)
[68] which leads to an increase production of glycerol
through Gpd1p activity.

Hao et al. also focused on rapid non-transcriptional
feedback loops. First, they noticed that the response of the
SHO1 branch is more transient than that of the SLN1 branch.
Then, based on previous observations, they constructed
three simple mathematical models, each describing another
possible mechanism of HOG inactivation. One model was
based on Hog1p mediating activation of a negative regulator
(phosphatases), while the other two models focused on
the negative control of a positive regulator. Analysis of
the different models suggested a Hog1p-dependent feed-
back mechanism occurring early in the response. Their
experimental analysis confirmed this and suggested that
Hog1p acts negatively on Sho1p by phosphorylation, thereby
implementing a direct negative feedback loop.

Muzzey et al. [18] followed a similar approach to
study the feedback mechanisms within the pathway. They
identified the transient activation of Hog1p with a feature
called perfect adaptation, which states that the steady state
output of the pathway does not depend on the strength of the
osmotic shock. They argued that robust perfect adaptation
requires at least one negative feedback loop containing an
integrating component [90] and they analyzed the location
of this integrator. They defined an integrating component
as a dynamic variable whose rate of change does not

depend on itself. They monitored multiple system quantities
(cell volume, Hog1p, and glycerol) and used varied input
waveforms to analyze the pathway. Similar to Hao et al. [16],
they constructed different variants of a mathematical model,
each with a different location of the integrating component.
The authors found that the integral feedback property is
Hog1p dependent and regulates glycerol uptake.

More recently, Zi et al. [15] analyzed the experimental
frequency response of the HOG pathway done by Hersen et
al. and Mettetal et al. They constructed a minimal model
that can reproduce the response of the pathway to oscillating
inputs (Figure 5(b)) [15]. They defined a signal response
gain, which is defined as the ratio of the integrated change
of the output of the pathway to the integrated input change
and represents a measurement for the efficiency of signal
transduction. They concluded that yeast cells have optimized
this signal response gain with respect to certain durations
and frequencies of osmotic variations.

These different analyses have shown that the HOG
signaling cascade can be described in a very simple and
modular way with several feedback loops operating to
deactivate the pathway: two operating on short time scales
through Hog1p activity (Sho1p deactivation and glycerol
production increase), and one depending on transcriptional
activation of GPD1. The dynamics of the pathway was also
precisely measured and it was shown that it behaves as
a low-pass filter with a cutoff frequency, probably set by
protein concentration. Interestingly, the SHO1 branch which
is known to be involved in other cellular processes was shown
to be slower in activating the Hog1p MAPK than the SLN1
branch. Finally, those approaches have provided us with an
easily tractable mathematical model of the HOG pathway
that can be efficiently coupled to detailed mechanistic models
to study in silico the behavior of this MAPK pathway. Taken
together, the coupling between mathematical modeling and
experimental frequency analysis of the HOG pathway has
given very important insights into the HOG pathway dynam-
ics and more generally its functioning, demonstrating the
interest of developing such strategies for studying signaling
pathways in yeast.

8. Future Directions

Although the structure and the dynamics of the HOG
signaling pathway are now well understood, several key
points remain to be elucidated, the most elusive one being
the mechanistic functioning of the two osmosensors, Sln1p
and the Sho1p complex. Another important aspect of a
better understanding of the HOG pathway is to integrate
its behavior with other cellular processes. In particular, in
2000, Gasch et al. [73] compiled genome expression profiles
of S. cerevisiae yeast subjected to several stress conditions and
discovered that genes normally induced after a hyperosmotic
shock are downregulated in response to a hypo-osmotic
shock and vice versa. The CWI pathway is activated by
hypo-osmotic stimulation [29], its physiological role being
to reinforce the cell wall and prevent the cell from bursting.
HOG and CWI do not share direct components but were
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seen to interact with each other [91, 92]. During cell growth
both pathways may well be activated and deactivated within
short intervals to balance between cell expansion and cell
wall development. The Sln1p-dependent response regulator
Skn7p [93, 94] could have a role in linking the cell-integrity
pathway to the HOG pathway. Skn7p also interacts with
Rho1p an upstream component of the CWI pathway. The
evidence that Skn7p is apparently controlled by sensors of
both the HOG pathway and the cell-integrity pathway makes
Skn7p an excellent candidate for a regulator that coordinates
osmoregulation and cell wall biogenesis [23, 93, 94]. More
work is needed to better understand the putative role of
Skn7p in coordinating different aspects of turgor pressure
control and cell surface assembly. Using minimal models
and fluctuating environments to activate periodically the
CWI and/or the HOG pathway is one interesting way to
explore their interactions. Similarly, it is known that the
HOG pathway and the Pheromone pathway can interact
[95–98]. For example, a hog1∆ strain will respond to a
hyperosmotic shock by activating the response to pheromone
pathway. Again, the dynamics of such cross-talk has not
been intensely studied. Performing time varying inputs with
both pheromone and hyperosmotic medium will provide
invaluable experimental data to probe for the dynamical
aspects of cross-talk between MAPK in yeast.

Since MAPKs pathways are highly conserved from yeast
to mammalian cells, it would be interesting to test higher
eukaryotic cells, in single cell experiments, for similar system
level properties. Although more difficult to implement than
for yeast cells, microfluidic technics can also be used to
control the external environments of mammalian cells both
in time and space. Transposing the approaches described
here to mammalian cells will probably give further insights
in their signaling pathways dynamics.

9. Conclusion

Since its initial discovery in 1993 [24], extensive molec-
ular and genetic research has uncovered the molecular
actors, interactions, and functions of the components in
the HOG signaling pathway. However, these methods are
limited in that one cannot predict the behavior of a
complex system from the analysis of isolated components.
Understanding of the entire system requires the use of
novel techniques borrowed from engineering, physics, and
mathematics. Microfluidic technologies combined with live-
cell microscopy have allowed the use of temporally complex
stimuli to interrogate pathway function. Kinetic information
obtained through biochemistry combined with knowledge
of the molecular components has allowed for complex
quantitative models of the HOG pathway to be constructed.
These models in turn provide experimentally testable predic-
tions about pathway behavior and function. Simple “black-
box” models designed to mimic only key components of
the pathway have proven useful for understanding specific
phenomena. Thus, genetic and biochemical data combined
with novel experimental approaches and modeling have
allowed for the prediction of the dynamics and systems-level

properties of HOG pathway signaling processes. These
techniques are easily extended to other signaling pathways
of interests with the final goal being to understand the
relationships between structure, kinetics, and dynamics at
the systems-level in complex biological networks.
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