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Abstract

By implementing an external feedback loop one can tightly control the expression of a gene over many cell
generations with quantitative accuracy. Controlling precisely the level of a protein of interest will be useful
to probe quantitatively the dynamical properties of cellular processes and to drive complex, synthetically-
engineered networks. In this chapter we describe a platform for real-time closed-loop control of gene
expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics
to manipulate the cells environment, and original software for automated imaging, quantification, and
model predictive control. By using an endogenous osmo-stress responsive promoter and playing with the
osmolarity of the cells environment, we demonstrate that long-term control can indeed be achieved for
both time-constant and time-varying target profiles, at the population level, and even at the single-cell level.
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1 Introduction

Understanding the information processing abilities of biological
systems is a central problem for systems and synthetic biology
[1–6]. The properties of a living system are often inferred from
the observation of its response to perturbations. Currently it is not
possible to control protein levels in a precise and time-varying
manner, even though this would be instrumental in our under-
standing of gene regulatory networks. To deal with this problem,
we present a novel experimental strategy to gain quantitative, real-
time control on gene expression in vivo. We see the problem of
manipulating gene expression to obtain given temporal profiles of
protein levels as a model-based control problem.More precisely, we
investigate the effectiveness of computerized closed-loop control
strategies to control gene expression in vivo. In model based
closed-loop control, a model of the system is used to constantly
update the control strategy based on real-time observations.
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We propose an experimental platform that implements such an in
silico closed-loop in the budding yeast Saccharomyces cerevisiae. We
show that gene expression can be controlled by repeatedly stimu-
lating a native endogenous promoter over many cell generations for
both time-constant and time-varying target profiles and at both the
population and the single-cell levels.

2 Results

2.1 The Controlled

System

We based our approach on the well-known response of yeast to an
osmotic shock, which is mediated by the HOG (high osmolarity
glycerol) signaling cascade. Its activation leads to the phosphoryla-
tion of the protein Hog1 (Fig. 1) which orchestrates cell adaptation
through glycerol accumulation. Phosphorylated Hog1 promotes
glycerol production by activating gene expression in the nucleus as
well as by stimulating glycerol producing enzymes in the cytoplasm.
Once adapted, the cells do not sense the hyperosmotic environ-
ment anymore, the HOG cascade is turned off and the transcrip-
tional response stops [7–9]. In control terms, yeast cells implement
several, short-term (non-transcriptional) and long-term (transcrip-
tional) negative feedback loops (see Chapter 10) which ensure their
perfect adaptation to the osmotic stress [10]. Because of these
adaptation mechanisms, it is a priori challenging to control gene
expression induced by osmotic stress. It is thus an excellent system
to demonstrate that one can robustly control protein levels even in
the presence of internal negative feedback loops. Several genes are

Fig. 1 Natural and engineered cell response to hyperosmotic shocks [14]. A hyperosmotic stress triggers the
activation and nuclear translocation of Hog1. Short-term adaptation is mainly implemented by cytoplasmic
activation of the glycerol-producing enzyme Gpd1 and closure of the aqua-glyceroporin channel Fps1. Long-
term adaptation occurs primarily through the production of Gpd1. For our application, the expression of the
protein of interest, yECitrine, is controlled by the osmo-responsive promoter pSTL1
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up-regulated in response to a hyper osmotic stress. This includes
the nonessential gene STL1 which codes for a glycerol proton
symporter gene [12]. We decided to use its native promoter to
drive the expression of yECitrine, a fluorescent reporter. Applying
an osmotic stress transiently activated the HOG cascade and yECi-
trine levels reached modest values. Importantly, when short but
repeated stresses were applied, pSTL1 could be repeatedly activated
and much higher levels could be reached [14].

2.2 The Experimental

Platform

To observe the cells and control their environment, we designed a
versatile platform made of standard microscopy and microfluidic
parts. The microfluidic device contained several 3.1 μm high cham-
bers which were connected by both ends to large channels through
which liquid media could be perfused (Fig. 2). Since the typical
diameter of a S. cerevisiae cell is 4–5 μm, the cells were trapped in
the chamber as a monolayer and their motion was limited to slow
lateral displacement due to cell growth. This design allowed for
long-term cell tracking (>15 h) and for relatively rapid media
exchanges (~2 min). The HOG pathway was activated by switching
between normal and sorbitol enriched (1 M) media.

Fig. 2 A platform for real-time control of gene expression in yeast [14]. (Left) Yeast cells grew as a monolayer
in a microfluidic device which was used to rapidly change the cells’ osmotic environment (valve, blue frame)
and to image their response. Segmentation and cell tracking were done using a Hough transform (orange
frame). The measured yECitrine fluorescence, either of a single cell or of the mean of all cells, was then sent to
a state estimator connected to an MPC controller. A model (center, black frame) of pSTL1 induction was used
to find the best possible series of osmotic pulses to apply in the future so that the predicted yECitrine level
follows a target profile. (Right) At the present time point (orange disk), the system state is estimated (green)
and the MPC searches for the best input (pulse duration, number of pulses) whose predicted effect (blue and
black curves) minimizes its distance to the target profile (red dashed line) for the next 2 h. Here, the osmotic
series of pulses that corresponds to the blue curve (#4) was selected and sent to the μfluidic command.
This control loop is iterated every 6 min unless a stress is applied. Solid lines and their envelopes are the
experimental means and standard deviations of the cells fluorescence

In Silico Control of Biomolecular Processes 279



2.3 Model of pSTL1

Induction

To decide what osmotic stress to apply at a given time, we used an
elementary model of pSTL1 induction. Many models have been
proposed for the hyperosmotic stress response in yeast [10, 15–19].
We used a generic model of gene expression written as a two-
variable delay differential equation system where the first variable
denotes the recent osmotic stress felt by the cell and the second the
protein fluorescence level (Fig. 2). Since our goal was to demon-
strate robust control despite the presence of un-modeled feedback
loops, the adaptation mechanisms described above were purpose-
fully neglected. The choice of this model was also motivated by the
trade-off between its ability to quantitatively predict the system’s
behavior (favors complexity) and the ease of solving state estima-
tion problems (favors simplicity). Despite its simplicity, we found a
fair agreement between model predictions and calibration data
corresponding to fluorescence profiles obtained by applying either
isolated or repeated osmotic shocks of various durations [14].

2.4 Closing the Loop The fluorescence intensity either of a single cell, arbitrarily chosen at
the start of the experiment, or averaged over the cell population, was
sent to a state estimator (extended Kalman filter), connected to a
model predictive controller (MPC) [14]. MPC is an efficient frame-
work well adapted to constrained control problems. Schematically,
given a model of the system and desired temporal profiles for sys-
tem’s outputs, MPC aims at finding inputs so as to minimize the
deviation between the outputs of themodel and the desired outputs.
The control strategy is applied for a (short) period of time. Then the
new state of the system is observed and this information is used to
compute the control strategy to be applied during the next time
interval. This receding horizon strategy yields an effective feedback
control. In practice, every 6 min, given the current estimate of the
system state, past osmotic shocks, and ourmodel of gene expression,
the controller searched for the optimal number of osmotic pulses to
apply within the next 2 h and their optimal start times and durations
(Fig. 2). If a shock had to be applied within the next 6 min, then it
was applied. Otherwise, the same computation was reiterated 6 min
later based on new observations. We dealt with short term cell
adaptation by imposing a maximal stress duration of 8 min and a
20-min relaxation period between consecutive shocks. Under such
conditions cells stay responsive to osmotic stress at all times.

2.5 Closed-Loop

Population Control

Experiments

First, we demonstrate that one can maintain the average fluores-
cence level of a cell population at a given constant value (set-point
experiment) and force it to follow a time-varying profile (tracking
experiment). Both types of experiments lasted at least 15 h, starting
with a few cells and ending with 100–300 cells in the field of view.
The control objective was to minimize the mean square deviations
(MSD) between the mean fluorescence of the population of cells
and the target profile. We succeeded in maintaining the average
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fluorescence level at a given constant value, or in forcing it to follow
time-varying profiles (Fig. 3) [14]. Admissible time-varying target
profiles were obviously constrained by the intrinsic timescales of the
system such as the maximal protein production and degradation
rates. The effective control range spans an order of magnitude: set-
point control can achieved between 200 and 2,000 fluorescence
units [14]. Quantitative limitations of our experimental platform
can originate from the model, the state estimator, the control
algorithm and the intrinsic biological variability of gene expression.
In silico analysis showed that applying the proposed control strategy
to the (estimated state of the) system resulted in control
performances that were significantly better than those obtained
experimentally [14]. Therefore the control algorithm performed
well, and future improvements should focus on system modeling
and state estimation to better represent the experimental state of
the system.

Fig. 3 Real-time control of gene expression [14]. (a) Control at the population level. Representative set-point
control experiments and tracking control experiments are shown. Shock starting times and durations (see
color code) were computed in real time. The measured mean cell fluorescence is shown as solid blue lines.
The envelopes indicate standard deviation of the fluorescence distribution across the yeast population. (b)
Control at the single cell level. The yECitrine fluorescence of the controlled cells are shown as orange lines.
Note that the population follows the target profile but with less accuracy than the controlled single cell
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2.6 Closed-Loop

Single-Cell Control

Experiments

In a second set of experiments, we focused on the real-time control
of gene expression at the single-cell level. We tracked one single cell
over at least 15 h and used its fluorescence to feed the MPC
controller. As shown in Fig. 3, we obtained results whose quality
is out of reach of any conventional gene induction system, both for
constant and for time-varying target profiles. Because of intrinsic
noise in gene expression, single cell control was a priori more
challenging than population control. And indeed, when compared
with the mean fluorescence levels in population control experi-
ments, the fluorescence levels of controlled cells in single-cell con-
trol experiments showed larger fluctuations around the target
values. However, at the cell level, the mean square deviations of
controlled cells obtained in single-cell control experiments were
significantly smaller than that of a cell in population control experi-
ments [14]. This shows that real-time control effectively improves
control quality and counteracts the effects of noise in gene expres-
sion when performed at the single-cell level.

3 Discussion

3.1 Summary We demonstrated that gene expression can be controlled in real-
time with quantitative accuracy at both the population level and the
single-cell level by interconnecting conventional microscopy,
microfluidics, and computational tools. Importantly, we provided
evidence that real-time control can dynamically limit the effects of
biological noise when applied at the single-cell level. The fact that
good control results can be obtained in a closed-loop setting with a
relatively coarse model of an endogenous promoter suggests that
extensive modeling will not be required to transpose our approach
to other endo- and exogenous induction.

3.2 Related Works The actual use of in silico feedback loops to control intracellular
processes has been proposed only recently. In 2011, we showed
that the signaling activity in live yeast cells can be controlled by an
in silico feedback loop [20]. Using a proportional-integral (PI)
controller we controlled the output of a signal transduction path-
way by modulating the osmotic environment of cells in real time.
A similar framework has been proposed by Menolascina et al. to
control a large synthetic gene network [21]. More recently,
Toettcher et al. used elaborate microscopy techniques and optoge-
netics to control in real time and at the single-cell level the localiza-
tion and activity of a signal transduction protein (PI3K) in
eukaryotic cells [22]. Interestingly, they were able to buffer external
stimuli by clamping PIP3 for short time scales. With this approach,
the authors were able to reduce cell-to-cell variability of the
cells output by applying different inputs to each cell (Fig. 4a).
The most closely-related work is that of Milias-Argeitis et al. [23].
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Using optogenetic techniques, they managed to control the expres-
sion of a yeast gene to a constant target value over several hours
(Fig. 4b). In particular they are able to control the system to a fixed
set point after they have sent a random series of pulses. Their
approach is based on a chemostat culture and is therefore promising
for many biotechnological applications such as the production of
biofuels or small-molecule drugs, even if scaling up laboratory
experiments to industry scale has proven difficult. However,
because it does not allow for single-cell tracking and single-cell
control, it is less adapted to probe biological processes in single-
cell quantitative biology applications. These works have been
reviewed in more depth by Chen et al. [24].

3.3 Perspectives Connecting living cells to computers is a promising field of research
both for applied and fundamental research. Bymaintaining a system
around specific operating points or by driving it out of its standard

Fig. 4 Other real-time control platforms (a) Optogenetics control of localization and activity of PI3K in
mammalian cells [22]. The amount of PI3K products, PIP3, was assayed by measuring PHAkt-cerulean
recruitment to the plasma membrane. Gray line indicates the addition of a PI3K inhibitor at 400 s.
(b) Optogenetics control of gene expression in chemostat using Venus as reporter protein in yeast [23].
Set-point control was achieved irrespectively of the initial state of the cell population
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operating regions, real-time control approaches offer unprece-
dented opportunities to investigate how gene networks process
dynamical information at the cell level. We also anticipate that
such platforms will be used to complement and help the develop-
ment of synthetic biology via the creation of hybrid systems
resulting from the interconnection of in vivo and in silico comput-
ing devices.
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International Associé CAFS (Cell Adhesion France-Singapour).

References

1. Bhalla US, Ram PT, Iyengar R (2002) MAP
kinase phosphatase as a locus of flexibility in a
mitogen-activated protein kinase signaling net-
work. Science 297:1018–23

2. Hooshangi S, Thiberge S, Weiss R (2005)
Ultrasensitivity and noise propagation in a syn-
thetic transcriptional cascade. Proc Natl Acad
Sci U S A 102:3581–6

3. Cai L, Dalal CK, Elowitz MB (2008)
Frequency-modulated nuclear localization
bursts coordinate gene regulation. Nature
455:485–90

4. Celani A, Vergassola M (2010) Bacterial strate-
gies for chemotaxis response. Proc Natl Acad
Sci U S A 107:1391–6

5. Baumgartner BL, Bennett MR, Ferry M et al
(2011) Antagonistic gene transcripts regulate
adaptation to new growth environments. Proc
Natl Acad Sci U S A 108:21087–92

6. O’Shaughnessy EC, Palani S, Collins JJ et al
(2011) Tunable signal processing in synthetic
MAP kinase cascades. Cell 144:119–31

7. de Nadal E, Alepuz PM, Posas F (2002) Deal-
ing with osmostress through MAP kinase acti-
vation. EMBO Rep 3:735–40

8. Hohmann S (2002) Osmotic stress signaling
and osmoadaptation in yeasts. Microbiol Mol
Biol Rev 66:300–372

9. Miermont A, Uhlendorf J, McClean M et al
(2011) The dynamical systems properties of
the HOG signaling cascade. J Signal Transduct
2011:930940
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