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Abstract. Recent works have demonstrated the experimental feasibil-
ity of real-time gene expression control based on deterministic controller
designs. By taking control of the level of intracellular proteins, one can
probe the cell dynamics with unprecedented flexibility. However, single-
cell dynamics are stochastic in nature, and a control framework explicitly
accounting for this variability is lacking. In this work we devise a stochas-
tic Model Predictive Control (MPC) framework that fills this gap. Based
on stochastic modelling of gene response dynamics, our approach com-
bines a full state-feedback receding-horizon controller with a real-time
estimation method that compensates for unobserved state variables. Us-
ing previously developed models of osmostress inducible gene expression
in yeast, we show in silico that our stochastic control approach may
outperform deterministic control design in the control of single cells.
Application of the proposed framework to real experiments on yeast is
envisioned.

1 Introduction

Gene expression plays a central role in the orchestration of cellular processes.
The use of inducible promoters to change the expression level of a gene from
its physiological level has significantly contributed to the understanding of the
functioning of regulatory networks. Whereas the precise time-varying perturba-
tion of the level of a target protein has the potential to be highly informative
on the functioning of cellular processes, so far, inducible promoters have been
used for either static perturbations or simple dynamic perturbations with lim-
ited accuracy (see [12] for a notable exception). Alternative solutions, based on
real-time control, have recently been proposed [11, 14, 10, 15]. In real-time, the
level of the protein is observed and gene induction is modulated based on the dis-
tance to the objective. Thanks to the implementation of such external feedback
loops, one can maintain the mean level of a fluorescent protein at some tar-
get value over extended time durations (setpoint experiments) and even obtain
time-varying profiles with good quantitative accuracy (tracking experiments).



2 Maruthi et al.

However, because of the significant cell-to-cell variability and the stochasticity
of gene expression, even if the mean level of the protein follows precisely the ob-
jective, the performance of the controller is significantly worse when measured at
the single cell level. Yet if one wants to understand the effect of a perturbation
of the level of a protein on a given process, one needs to control the level of this
protein at the single cell level, that is, one needs to perform single cell control.

In [15] we have shown that single cell control is indeed effective: we obtained
better control performances when controlling single cells individually than when
controlling the mean of the cell population. This slightly improved performance
was obtained by controling the level of a particular, randomly-chosen cell using
a deterministic model of gene expression. Given the stochasticity of cellular
processes, one might then wonder whether better control performances can be
obtained by using a more appropriate stochastic model of gene expression. This
question is actually not trivial. While the stochastic model is supposed to be
closer to reality, it necessitates the use of complex controller architectures and
the resolution of computationally challenging optimization problems under tight
time constraints.

Here, we investigate to what extent stochastic control techniques outper-
form more traditional deterministic control approaches. To do so, we consider a
stochastic model of gene expression at the single cell level, alongside its determin-
istic counterpart, and develop state estimators and controllers for deterministic
and stochastic control. We then compare the efficiency of the two approaches for
setpoint regulation and tracking control in silico experiments. Methodologically,
we have introduced a stochastic MPC design approach of broad applicability,
and a generalizable hybrid approach to state estimation. To our knowledge this
is the first work on single cell control that accounts for gene expression noise.

The paper is structured as follows. In Section 2, we present the biological sys-
tem and the control platform used in [15] that has motivated this work, as well
as the models used, inspired from [18, 8]. In Section 3 we present control algo-
rithms for deterministic and stochastic control assuming full state observability,
whereas in Section 4 we present a state estimation approach for stochastic mod-
els. The performances of deterministic and stochastic controllers are compared
in Section 5 on two in silico control experiments.

2 Osmostress-induced gene expression in yeast

2.1 Hyper-osmotic stress response in yeast

In the budding yeast S. cerevisiae, an increase of the environmental osmolarity
creates a water outflow and a cell shrinkage. The adaptation response to such
an osmotic shock is mainly mediated by the high osmolarity glycerol (HOG)
signal transduction pathway, leading to an increase of the cellular glycerol level
via various mechanisms, one of which being the upregulation of genes involved
in glycerol production [9]. In [15], we used the promoter of the osmoresponsive
gene STL1 to drive the expression of a yellow fluorescent protein, yECitrine,
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so as to monitor the gene expression response of the cells to repeated osmotic
stresses (Fig. 1(a)).
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Fig. 1: The experimental setup. (a) Hyperosmotic shocks trigger the activation of the
Hog1 protein and the intracellular accumulation of glycerol via short- and long-term
adaptation responses (grayed). This system can be used to induce the production of
a protein of interest, here a yellow fluorescent protein (YFP), by repeatedly apply-
ing hyperosmotic stresses. (b) Real-time control platform: single-cell and population
control problems are defined respectively as controlling the fluorescence of a single
randomly-chosen cell and the mean fluorescence of all the cells.

2.2 Platform for control of osmostress-induced gene expression

Using microfluidic devices one can grow yeast cells in monolayers over extended
time durations. Because cells can be trapped in imaging chambers, their response
can be tracked by fluorescence microscopy and their environment can be rapidly
changed, thus enabling the repeated application of osmotic shocks (Fig. 1(b)).
The addition of software for image analysis and for state estimation, and the
computation of a control strategy closes the feedback loop. Experiments typically
last 10-20 hours, with fluorescence measurements every 5-10 minutes.

2.3 Modeling osmostress-induced gene expression

As in [18], we represent the osmostress induced gene expression by the following
set of reactions.

pSTL1 off c1u−−⇀↽−−
c2

pSTL1 on

pSTL1 on + CR
c3−⇀↽−
c4

CR.pSTL1 on

CR.pSTL1 on c5−→ CR.pSTL1 on +mRNA

mRNA
c6−→ mRNA+YFP

YFP
c7−→ φ

mRNA
c8−→ φ

(1)

Here pSTL1 off and pSTL1 on represent the inactive and the active states of the
pSTL1 promoter, respectively. Furthermore, the interaction of pSTL1 on with
chromatin remodeling complexes (CR) enables the formation of the CR.pSTL1 on
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complex and the effective transcription of mRNA, and the subsequent produc-
tion of the fluorescent protein YFP. The degradation of the mRNA and the
YFP protein follow first order kinetics. A change in the valve status from OFF
to ON leads to an increase in the osmolarity of the cells environment, in the
activation of the Hog1 protein, and in the increase of the effective input func-
tion u affecting promoter transition rates. The modeling of these processes is
detailed in Appendix A.1. The initial concentrations, the rate coefficients, and
the parameters of the activation dynamics are listed in Table 4 in the Appendix.

The stochastic interpretation of the above reactions leads to a Chemical Mas-
ter Equation (CME) model, which fully characterizes the quantity P (x(t)|x(0)),
namely the probability that the global state of the system (represented by vari-
ables denoting molecules count) at time instant t ∈ R

+ is x(t), given its initial
state [6].

The dynamics can be alternatively approximated by a system of coupled de-
terministic dynamical equations, known as the Reaction Rate Equations (RRE)
[6], operating over the concentrations x of the species as:

ẋi(t) =
M
∑

j=1

vijaj(x(t)), i = 1, . . . , N. (2)

Here the quantity M is the total number of reactions and N is the total number
of species. The vector vj := (vij)

N
i=1 is the state change vector for each reaction

Rj : vij represents the stoichiometry, defined as the change in the molecular
population of a species Si caused by the reaction Rj . Finally, the coefficients
aj(·) are the reaction propensities, derived from the law of mass-action: the
control input in particular directly affects the affinity term a1.

In order to synthesize a control architecture, we have adopted a discrete-time
simulation framework. This has required a ∆t-time sampling of both the RRE
and the CME. The latter is achieved by a simple adaptation of the Stochastic
Simulation Algorithm (SSA) [6]. Such a time discretization leads to the char-
acterization of the model dynamics via one-step probability distributions, to be
later used in the context of the model in (4). [meaning of last sentence?]

In order to prevent cell adaptation, our controller needs to comply with
particular timing constraints: the valve should remain ON at most 8 minutes
[actually between 5 and 8 minutes] and two stresses must be separated by at
least 20 minutes (see Appendix A.1 for more details) [15].

Fluorescence measurements taken on every cell upon execution of the full
image processing chain are modelled as

yk = YFPk + ek, ek = (ea + eb ·YFPk)ηk, (3)

where yk is the measurement at time k for a given cell, and ηk, with k = 1, . . . , T ,
are i.i.d. standard normal random variables, whereas ea and eb are the intensity
of the additive and multiplicative parts of the measurement noise.
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3 Single-cell control with full state information

We consider the control of gene expression as a model-based optimal control
problem, assuming in this section the availability of full-state information, that
is, of the values of all the variables. Above we have formulated two models: a
stochastic discrete-state one and a deterministic continuous-state one. For both
cases, we will propose a control synthesis architecture based on the classical
dynamic programming (DP) paradigm. As deterministic controllers have been
previously used for the control of single cell dynamics [15], we use this approach
as a benchmark against which the performance of the stochastic controller is
later compared.

The goal of the control synthesis problem is to track a given profile of the
protein concentration over a finite time horizon T . As the classical DP suffers
from the curse of dimensionality, we employ an approximate DP method called
Fitted Q-Iteration (FQI) [4], tailored here to the finite-horizon setting. In short,
the FQI algorithm applies the idea of the fitted value iteration to the so-called
Q-functions: a Q-function approximation is used in place of a value function
approximation, and it allows for an immediate computation of the optimal ac-
tions at each optimisation stage. The FQI algorithm offers the possibility to
employ powerful regression algorithms from supervised learning to interpolate
the Q-function computed over a finite set to cover the entire state space.

Optimal controller synthesis via DP Let us recall that we work with models
in discrete time, here indexed by k. Let us denote the state space byX , the action
space by U , and the space supporting the noise term by W . For each x ∈ X we
denote by U(x) ⊆ U the set of actions enabled at x. A stochastic discrete-time
dynamical system is described by the following difference equation:

xk+1 = f(xk, uk, wk), k = 1, . . . , T − 1, (4)

where xk ∈ X is the state of the system at time k, uk ∈ U(xk) is the action
taken at time k, and wk ∈ W is the noise variable with a specified distribution:
the recursive dynamics in (4) can be equivalently expressed by a conditional
distribution xk+1 ∼ P (·|xk, uk) that can be derived from a discrete-time ver-
sion of the CME we discussed in the previous section, and where we explicitly
emphasise the role of the chosen input.

A control policy is a sequential decision rule π = (πk)
T−1
k=0 , where πk : X →

U has to be chosen over admissible controls only, namely πk(x) ∈ U(x) for
all x ∈ X . The instantaneous cost ck(xk, uk) is comprised within an additive
performance criterion over a finite time horizon, which for a fixed policy π is
given by

Qπ
0 (x0, u0) := E

[

cT (xT ) +

T−1
∑

k=1

ck(xk, πk(xk))

]

, (5)
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where cT is the terminal cost, a function only of the state variable. We are
interested in the policy π∗ that minimizes the cost as:

Q∗
0(x, u) := inf

π
Qπ

0 (x, u) = Qπ∗

0 (x, u).

This can be obtained via DP by the backward recursion

Q∗
k(x, u) = T Q∗

k+1(x, u), (6)

initialised at cT , and where T is an operator acting on functions H : X×U → R

as follows:
T H(x, u) := c(x, u) + inf

u′∈U
EH(f(x, u, w), u′). (7)

The optimal policy is computed as

π∗
k(x) ∈ argmin

u∈U
Q∗

k+1(x, u), k = 0, . . . , T − 1. (8)

The Q-iteration in (6)-(8) is computationally unfeasible for problems with ex-
tended state spaces, and in particular with the single-cell control problem we
are dealing with: we approximate its solution by means of a stochastic FQI.

FQI for the stochastic model The FQI is a batch-mode algorithm computed
offline, which fits an approximation architecture to the Q-function defined over
X × U using a set of tuples

F = (xi, ui, cij , yij), i = {1, . . . ,mx}, j = {1, . . . ,my}, (9)

where xi ∈ X is the instance of the current state, ui ∈ U(xi) is the corresponding
action, yij ∈ X is a possible successor state under the action ui, cij is the cost
associated with a transition of the state from xi to yij , mx is the number of
current states, my is the number of successor states that are needed for the
evaluation of the expectation operator in (7) using Monte-Carlo integration.

We adopt an offline approach owing to the computational complexity of the
optimisation problem, and the stringent online time requirements. Using the
batch of samples in (9), Algorithm 1 (in the Appendix) computes an approxi-
mation of the Q-function through a backward recursion from time instant T to
1. Each iteration of the algorithm consists of the following two steps:

– In the first step, the backward recursion for the Q-function at time k + 1 is
evaluated using a Monte-Carlo integration. The operator T is approximated
by an empirical operation T̂F as defined in (10): namely the value of T Q̂k+1

is estimated as T̂FQ̂k+1, for all x
i, i = 1, . . . ,mx.

– The second step involves fitting the approximation function Q̂k to T̂FQ̂k+1:
the optimal fit Q̂k is achieved by means of a regression algorithm.

The behaviour, generalisation capability, and computational complexity of
the FQI method is heavily dependent on the choice of the regression algorithm.
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The supervised learning paradigm offers a wide range of algorithms that can be
used for regression [3]. We have made use of the Fixed-Size Least-Squares Sup-
port Vector Machine (LS-SVM) [5], due to its computational efficiency and its
powerful capability of generalisation. The LS-SVM model provides two param-
eters for tuning: the squared bandwidth σ2 and the regularization parameter
γ, which were tuned manually through trial and error. These parameters are
crucial to determine the trade-off between the training error minimization, the
smoothness and the generalization. We assume that the regression algorithm is
fixed and denoted by G the corresponding space of test functions G : X×U → R.
For a given tuple F we denote

T̂FH(xi, ui) := inf
u′∈U(xi)

1

my

my
∑

j=1

[

cij +H(yij , u′)
]

(10)

and the corresponding 2-norm as ‖H ′−H ′′‖F :=
∑mx

i=1

∣

∣H ′(xi, ui)−H ′′(xi, ui)
∣

∣

2
.

FQI for the deterministic model An abstract discrete-time deterministic
model is a special case of (4) where the update law f does not depend on the
noise variable w. In our work, we refer to the deterministic dynamics in (2), after
time discretization. For this simpler setup, the DP operator takes the form

T H(x, u) = c(x, u) + inf
u′∈U

H(f(x, u), u′),

and no expectation evaluations are needed. Thus, we have my = 1, so that only
one successor state is needed for each instance of the current state. As a result,

T̂FH(xi, ui) = inf
u′∈U(xi)

[

ci +H(yi, u′)
]

.

One can therefore directly apply Algorithm 1 in the deterministic case.

Practical implementation of the stochastic FQI via receding horizon

Although the FQI for the deterministic model works well within our setup, the
FQI algorithm for the stochastic model over the entire experimental duration T
has been found to be infeasible, since parameters achieving a good generalisation
for the regression algorithm over the complete time horizon T are not easily
found, and because of the Monte-Carlo computations, which are absent in the
deterministic case. To overcome this issue, we embedded the FQI algorithm
into a receding horizon strategy, resulting in a stochastic MPC-like scheme (see
Algorithm 2 in Appendix) [1]. In short, over a finite prediction horizon Tp ≪ T ,
the Q-functions are approximated offline using Algorithm 1. [Check correctness]
After the computation of the optimal control sequence and the application of the
current control action, the horizon is shifted by one sample and the optimisation
is performed again, until the whole horizon T is covered.
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4 Partial information case: estimation of system states

Typically, not all state variables of a biological model are observed directly. This
is in particular the case for the yeast osmotic shock response system, where
measurements are assumed to follow model (3). Hence, state-feedback control
must rely on estimates of the state that are generated online from the avail-
able measurements. Here we develop a strategy for real-time state estimation
with reference to yeast osmotic shock response. However, the strategy can be
generalized and applied to other biological scenarios.

We start from the continuous-time stochastic Markov model of the CME,
which is expressed in terms of discrete-valued state variables x. One possible
approach for estimating state x from measurements yk is particle filtering [2].
In particle filtering, N hypothetical evolutions of the system state are randomly
simulated up to the next measurement. When this becomes available, state esti-
mates are produced by weighting the simulated trajectories, where the weights
quantify the relevance of every simulated trajectory to the new (partial) state
measurement. Since particles have to explore a large (possibly infinite) state
space, in practice, particle filtering requires many (e.g. N > 1000) simulations
of the system, which makes it poorly suited for online applications. In [2], we
have proposed an alternative approach, Unscented Kalman Filtering (UKF) [16],
based on a continuous-valued approximation of the CME model known as the
Chemical Langevin Equation (CLE) [7]. In the current context, this approach is
partly inappropriate, since the promoter state variables are inherently discrete
(they take values 0 or 1 only). In order to combine the flexibility of particle
filtering with the computational advantages of UKF, we propose to circumscribe
the Langevin approximation to the mRNA and protein dynamics.

We first note that promoter dynamics do not depend on mRNA and protein
abundance. Let us partition the state variables as x = (xd, xc), where xd =
(pSTL1 off , pSTL1 on , CR·pSTL1 on) and xc = (mRNA,YFP). Consider a model
where the dynamics of xd (not depending on xc) are left unchanged, while for
any given trajectory of xd, the dynamics of xc are approximated by the Langevin
equation

dxc
i =

M
∑

j=1

vcijaj(x
c, xd)dt+

M
∑

j=1

vcij

√

aj(xc, xd)dWj , i = 1, 2. (11)

The i bottom index was previously used to denote time as k – confusing? Here,
for j = 1, . . . ,M , the Wj are independent Wiener processes and vc·j is the sub-
vector of vj corresponding to xc. The relevance of the Langevin approximation
to mRNA and protein dynamics has been discussed in [7] and, for filtering ap-
plications, it has been assessed on a different but relevant system in [2]. Note
that, while xd remains discrete-valued, xc may now take continuous values.

Based on this hybrid model, a filtering procedure iterating over subsequent
measurement indices k and combining importance (particle) filtering with UKF
is obtained by the following rationale. At time tk−1, let x̂

c
k−1|k−1 be the estimate

of the current state xc based on measurements y0, . . . , yk−1, and let x̂d,i

k−1|k−1,
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with i = 1, . . . , N , be N putative values of the current state xd (with N small,

see below). For every i, a hypothetical discrete-state trajectory x̂d,i
k−1(t), with

t ∈ [tk−1, tk), is generated by stochastic simulation of the discrete-state dy-

namics starting from x̂d,i

k−1|k−1. Over the same time horizon, for every i, mRNA

and protein state predictions x̂c,i
k−1(t) are computed along trajectory x̂d,i

k−1(t) via
UKF. When the next protein measurement yk becomes available, based on mea-
surement model (3), an importance weight wi, proportional to the likelihood of
yk given the hypothetical state value x̂c,i

k−1(tk), is computed for every particle i.
Note that weights wi play the role of a-posteriori probabilities of the different
particles. Also, continuous-state predictions x̂c,i

k−1(tk) are updated to estimates

x̂c,i

k|k of the current state xc by integrating the new piece of information provided

by y(tk), in accordance with the so-called measurement-update step of UKF.
At this stage, the ensemble (Conditional Expectation) estimate x̂c

k|k as well as

an ensemble (Maximum-A-Posteriori) estimate x̂d
k|k for the discrete state are

computed as

x̂d
k|k = arg max

z∈{0,1}3

∑

i

1z
(

x̂d,i
k−1(tk)

)

· wi, x̂c
k|k =

∑

i

x̂c,i

k|k · wi, (12)

where 1z(·) is the indicator function. For control purposes, these are the estimates
that are passed to the controller (provided rounding of the entries of x̂c

k|k to

the nearest integers). To proceed for the next iteration of the algorithm, the

new putative values of the discrete state x̂d,j

k|k, with j = 1, . . . , N , are set equal

to the result of N independent random extractions from the pool of particles
{x̂d,i

k−1(tk)}i=1,...,N , with sampling probabilities equal to wi (resampling step of
particle filtering). The whole procedure is summarized in Algorithm 3 in the
Appendix.

The initialization of the procedure at experimental time 0 is performed based
on the a priori statistics of xd and xc. Given the small (finite) discrete state space
of xd, a small number of particles N much smaller than traditional particle filter
implementations is expected to suffice. Empirical evaluation (not reported here)
has led us to select N = 50, a value above which no significant improvement of
filtering performance has been observed. The implementation of the UKF pro-
cedure is analogous to that of [2] and is omitted for brevity. We just note that,
at every step k and for every particle i, UKF requires the numerical solution
of 2nc + 1 ODEs over the time span [tk−1, tk), with nc = 2 being the number
of continuous states. The solution of these ODEs can be carried on in paral-
lel with the simulation of x̂d,i

k−1. Contrary to the control module, resorting to
time discretization is not needed, although it can be considered towards higher
computational efficiency.
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Fig. 2: Comparison of stochastic and deterministic control schemes in the full infor-
mation case, run over the probabilistic model. (a)-(b) Deterministic controller tracking
the desired profiles with a shown deviation of 10% from reference trajectories. (c)-(d)
Stochastic controller showing improved performance with a deviation of 5%. (e)-(f)
Monte-Carlo simulations validating the superior performance of the stochastic con-
troller over its deterministic counterpart.
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5 Results

5.1 Deterministic and stochastic control in the full information case

In this section we present the results of the control of gene expression to track
time-homogeneous and time-varying target profiles, using the deterministic and
stochastic controllers detailed in Section 3. To test the effectiveness of the pro-
posed algorithms, the controller trained using the deterministic FQI was first
tested over the deterministic RRE model. As expected in this case, the con-
troller was successfully able to track the signals (see Appendix A.3 for details).
This controller was then used over the stochastic CME model. At the maximum,
the controller was able to track the reference signal to within a deviation of 10%
as shown in Fig. 2(a)(b). The deterministic controller was then replaced with
the stochastic controller (see Appendix A.2 for implementation details) and it
was found that the stochastic controller was able to track the reference signal
to within a deviation of 5% from the reference trajectory (Fig. 2(c)(d)). Owing
to the stochastic nature of the system, the stochastic controller was not able to
keep all the trajectories to within a deviation of 5% from the reference trajec-
tory. To get a comprehensive comparison of the performance of the stochastic
controller over the deterministic controller, 100 runs of each algorithm were per-
formed using Monte-Carlo simulations. To measure the quality of the control,
we use ǫ := 1

T−T0

∑T

k=T0
|Y FP k − Y FP ref,k|, where T0 is the time it takes the

system to reach the desired trajectory. In practice, we have chosen T0 = 400 and
T0 = 300 minutes for the set point and signal tracking experiments, respectively.
These results are presented in Fig. 2(e)(f). It is evident from the figure that
the controller developed considering the stochastic nature of the gene expression
yields superior performance than the controller developed ignoring the stochastic
behavior of gene expression reactions.

5.2 Stochastic control with partial information

The control laws obtained in the full information case are functions of the current
state xk: at each time k it is supposed that the controller observes the exact value
of the current state xk and that it applies the appropriate action. In reality the
measurements yk are limited to the fluorescent protein.

The hybrid filter detailed in Algorithm 3 has been used to extract informa-
tion about the states of the gene expression network. The results of the state
estimation with 50 particles is presented in Fig. 3(a). The filter finds it difficult
to track the switching of the discrete states but is able to track the mRNA and
YFP protein concentrations fairly accurately. We have then used the filter in
conjunction with the stochastic controller: the simulation results presented in
Figure 3(b)(c) show that the controller is robust to state estimation errors and
is able to successfully track the reference profiles.
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Fig. 3: Results of the stochastic control scheme run with the hybrid filter in the partial
information case. (a) State estimation shows accurate results for mRNA and YFP,
whereas the filter faces difficulties estimating the switching action of the promoter.
(b)(c) Controller robustness over state estimation errors and ability to track reference
signals to within a deviation of 5%.
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6 Discussion and conclusions

The main contribution of this paper is the development of a complete model-
based control framework adapted to stochastic models of gene expression. Al-
though the identification of stochastic models of gene expression has been ex-
tensively studied recently, the control of gene expression using stochastic models
has been barely addressed so far. This goal requires the non-trivial develop-
ment of stochastic state estimators and controllers. We have demonstrated in

silico that stochastic control has the potential to deliver superior performances
in comparison to its deterministic counterpart. This work paves the way for the
development of an experimental platform for single-cell control based on opto-
genetics solutions, which enable the independent stimulation of live single cells
in real-time [14, 17].
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A Appendix

A.1 Implementation Constraints on the Control of the Gene

Expression pathway

We have adopted a discrete-time framework to model the system dynamics. The
switching of the valve leading to the transient osmotic stresses is modelled using
a discrete state variable q ∈ {0, 1}, where 0 and 1 indicate the valve in the OFF
and ON positions respectively. The time constraints on the switching of the
valve to prevent cell adaptation are modelled using continuous state variables
θ ∈ [0, 20] and η ∈ [0, 8], both of which act as counters: the associated dynamics
are characterized by the following difference equations:

θk+1 = θk · (1−∆q) + [qk = 0, θk < 20] ·∆t
ηk+1 = ηk · (1 +∆q) + [qk = 1] ·∆t,

(13)

where ∆t is the discretization step and [·] is the Iverson bracket, defined as

[x ∈ A] =

{

1 if x ∈ A,

0 if x /∈ A.

There is a known lag between the valve actuation and the actual change of
the osmolarity of the cellular environment in the imaging chamber: this has been
characterized in [15] and is shown in Figure 4. We use a variable h to model this
lag via the following difference equation:

hk+1 = hk + [2 ≤ ηk ≤ 3] ·∆t−
1

4
[2 ≤ θk ≤ 6] ·∆t. (14)

It was noted in [18] that the signal transduction exhibits neither significant
stochastic fluctuations nor cell-to-cell variability, hence the Hog1 activation dy-
namics sk has been assumed to be purely deterministic:

sk+1 = sk(1 − Γ ·∆t) + κhk∆t. (15)

The promoter pSTL1 is activated at a rate uk, which is assumed to follow
Hill-type kinetics as a function of the nuclear Hog1 enrichment sk [18]:

uk =
(sk + s0)

nH

Kd
nH + (sk + s0)

nH
. (16)
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Fig. 4: Temporal evolution of the position of the microfluidic valve (0/1:
normal/hyper-osmotic medium) and the osmolarity of the cellular environment.

A.2 Implementation details of the FQI algorithm over the

stochastic CME model

For the stochastic rolling horizon control approach, the samples xi were drawn
corresponding to a single system trajectory. The trajectory was generated by
simulating the system using the discrete time version of the SSA detailed in the
section ?? above. For each xi, 250 tuples (fs = 250) of the form (xi, ui) were
generated. For each tuple, the system was simulated 100 times (ms = 100) to
obtain the next state yij to evaluate the Mote-Carlo integration. The cost cij was
computed according to (17) and a single batch of 25, 000 tuples (Fs = 25, 000)
was obtained. The optimization was performed for a prediction horizon Np of
8 minutes and a time horizon Nt of 700 minutes. The squared bandwidth σ2

and the regularization parameter γ of the regression algorithm were tuned by a
trial and error method as in the deterministic case and the parameters are listed
below.

Squared Bandwith (σ2) Regularization Parameter (γ)

600000 500

Table 1: Tuned LS-SVM parameters to track time varying and time constant
profiles using the controller trained on the stochastic CME model.

The stochastic FQI algorithm and the stochastic MPC algorithm are detailed
below
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Algorithm 1 Stochastic Finite Horizon FQI (T , F)

1: Initialize the parameters of the regression algorithm σ2 and γ and set Q̂T to 0
2: for k := T − 1 to 0 do
3: Estimate T̂FQ̂k+1.
4: Find the fit that minimizes the 2-norm loss by means of a regression algorithm

Q̂k(x, u) = argmin
G∈G

‖G − T̂F Q̂k+1‖F .

5: end for

Algorithm 2 Stochastic Model Predictive Control (T , Tp, F)

1: for k:=1 to T do
2: Initialize the parameters of the regression algorithm σ2 and γ and set QT to 0
3: for l := k + Tp to k do
4: Estimate T̂F Q̂l+1.
5: Find the fit minimizing the 2-norm loss by means of a regression algorithm

Q̂l(x, u) = argmin
G∈G

‖G − T̂F Q̂l+1‖F .

6: end for
7: end for

A.3 Implementation details of the FQI algorithm over the

deterministic RRE model

For the deterministic control approach presented in Section 3, 400 tuples were
generated corresponding to a single trajectory. The trajectory was obtained by
simulating reactions of the gene expression network using the RRE. A time
horizon of 700 minutes was considered and the regression algorithm was imple-
mented using the LS-SVM MATLAB toolbox in [13]. The fixed size LS-SVM
model, provides two parameters for tuning, the squared bandwidth σ2 and the
regularization parameter γ. The parameters were tuned manually using a trial
and error method and are listed in Tables 2 and 3 below.

A stage-dependent cost function has been chosen as below:

ck(Y FPk) = |Y FP k − Y FP ref,k| . (17)

The function penalises deviations from a reference profile Y FP ref , with a
minimum that is achieved when the protein concentration of the system equals
the reference protein concentration. For the deterministic control approach, the
deterministic version of the FQI algorithm was trained and implemented over
the RRE model. The simulation results in Figure 5 show that the system is able
to track the reference profiles within a maximum deviation of 5%.
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Time Horizon (T ) Squared Bandwith (σ2) Regularization Parameter (γ)

700 - 651 40000 1e− 1
650 - 601 40000 1e− 2
600 - 551 40000 10
550 - 501 40000 200
500 - 451 40000 1
450 - 401 40000 200
400 - 351 40000 100
350 - 301 40000 200
300 - 251 40000 100
250 - 201 40000 300
200 - 151 40000 100
150 - 1 40000 100

Table 2: Tuned LS-SVM parameters to track a set-point of 1500 (a.u.) using the
controller trained on the deterministic RRE model.

Time Horizon (T ) Squared Bandwith (σ2) Regularization Parameter (γ)

700 - 651 400000 50
650 - 601 40000 9
600 - 551 20000 1
550 - 501 400000 30
500 - 451 40000 596
450 - 401 40000 800
400 - 351 40000 300
350 - 301 100000 1
300 - 251 100000 11
250 - 201 100000 5
200 - 1 100000 4000

Table 3: Tuned LS-SVM parameters to track the sinusoidal reference signal using
the controller trained on the deterministic RRE model.
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Fig. 5: Results for the deterministic control scheme in the full information case.

A.4 Parameters employed in the simulation and analysis of the

model

Parameter Value Parameter Value

θ0 0 (a.u.) ∆t 0.008 (min)
η0 0 (a.u.) Ts 1 (min)
h0 0 (a.u.) Γ 0.9225 (a.u.)
s0 0 (a.u.) κ 0.3968 (a.u.)
(pSTL1off)0 1 (a.u.) Kd 0.34906 (a.u.)
(pSTL1on)0 0 (a.u.) nH 2.1199 (a.u.)
CR0 102.51 (a.u.) s0 0.0027998 (a.u.)
(CR · pSTL1on)0 0 (a.u.) var(CR0) 1.5
mRNA0 0 (a.u.) var(c6) 9.7e − 4

Y FP0 0 (a.u.) c5 12.256 (min)−1

c1 23.604 (min)−1
c6 0.36113 (min)−1

c2 180.03 (min)−1
c7 0.025091 (min)−1

c3 0.024559 (min)−1
c8 0.003354 (min)−1

c4 0.9384 (min)−1
cov(CR0c6) 1.2e − 6

ea 1.0115 (min)−1
eb 0.0037 (min)−1

Table 4: Initial concentrations and rate parameters of the model
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A.5 Hybrid Estimation Algorithm

Algorithm 3 Hybrid Filter for Estimation of the Model States

1: Initialize x̂
d,i

0|−1
(0), x̂i,c

0|−1
(0), and wi, with i = 1, . . . , N , s.t.

∑

i
wi = 1

2: for k = 0, 1, 2, . . . do
3: Acquire new measurement yk
4: Compute and normalize weights wi ∝ log p

(

yk|x̂
c,i

k−1
(tk)

)

, with i = 1, . . . , N

5: Compute UKF estimate x̂
i,c

k|k from x̂
i,c

k−1
(tk) and yk, with i = 1, . . . , N

6: Compute and provide ensemble estimates (12)
7: Define N new particles x̂i,d

k|k by resampling particles {x̂i,d

k−1
(tk)} with prob. {wi}

8: Simulate x̂
i,d

k (t), t ∈ [tk, tk+1), from x̂
i,d

k (tk) = x̂
i,d

k|k, with i = 1, . . . , N

9: Compute UKF prediction x̂
i,c

k (t) along x̂
i,d

k (t), t ∈ [tk, tk+1), with i = 1, . . . , N
10: end for


